Unverified Commit 947ae1dc authored by Nicolas Hug's avatar Nicolas Hug Committed by GitHub
Browse files

Update docstrings of detection models regarding resizing strategy (#8385)

parent c9eab681
......@@ -73,8 +73,12 @@ class FasterRCNN(GeneralizedRCNN):
The backbone should return a single Tensor or and OrderedDict[Tensor].
num_classes (int): number of output classes of the model (including the background).
If box_predictor is specified, num_classes should be None.
min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
min_size (int): Images are rescaled before feeding them to the backbone:
we attempt to preserve the aspect ratio and scale the shorter edge
to ``min_size``. If the resulting longer edge exceeds ``max_size``,
then downscale so that the longer edge does not exceed ``max_size``.
This may result in the shorter edge beeing lower than ``min_size``.
max_size (int): See ``min_size``.
image_mean (Tuple[float, float, float]): mean values used for input normalization.
They are generally the mean values of the dataset on which the backbone has been trained
on
......
......@@ -299,8 +299,12 @@ class FCOS(nn.Module):
channels that each feature map has (and it should be the same for all feature maps).
The backbone should return a single Tensor or an OrderedDict[Tensor].
num_classes (int): number of output classes of the model (including the background).
min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
min_size (int): Images are rescaled before feeding them to the backbone:
we attempt to preserve the aspect ratio and scale the shorter edge
to ``min_size``. If the resulting longer edge exceeds ``max_size``,
then downscale so that the longer edge does not exceed ``max_size``.
This may result in the shorter edge beeing lower than ``min_size``.
max_size (int): See ``min_size``.
image_mean (Tuple[float, float, float]): mean values used for input normalization.
They are generally the mean values of the dataset on which the backbone has been trained
on
......
......@@ -60,8 +60,12 @@ class KeypointRCNN(FasterRCNN):
The backbone should return a single Tensor or and OrderedDict[Tensor].
num_classes (int): number of output classes of the model (including the background).
If box_predictor is specified, num_classes should be None.
min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
min_size (int): Images are rescaled before feeding them to the backbone:
we attempt to preserve the aspect ratio and scale the shorter edge
to ``min_size``. If the resulting longer edge exceeds ``max_size``,
then downscale so that the longer edge does not exceed ``max_size``.
This may result in the shorter edge beeing lower than ``min_size``.
max_size (int): See ``min_size``.
image_mean (Tuple[float, float, float]): mean values used for input normalization.
They are generally the mean values of the dataset on which the backbone has been trained
on
......
......@@ -61,8 +61,12 @@ class MaskRCNN(FasterRCNN):
The backbone should return a single Tensor or and OrderedDict[Tensor].
num_classes (int): number of output classes of the model (including the background).
If box_predictor is specified, num_classes should be None.
min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
min_size (int): Images are rescaled before feeding them to the backbone:
we attempt to preserve the aspect ratio and scale the shorter edge
to ``min_size``. If the resulting longer edge exceeds ``max_size``,
then downscale so that the longer edge does not exceed ``max_size``.
This may result in the shorter edge beeing lower than ``min_size``.
max_size (int): See ``min_size``.
image_mean (Tuple[float, float, float]): mean values used for input normalization.
They are generally the mean values of the dataset on which the backbone has been trained
on
......
......@@ -352,8 +352,12 @@ class RetinaNet(nn.Module):
channels that each feature map has (and it should be the same for all feature maps).
The backbone should return a single Tensor or an OrderedDict[Tensor].
num_classes (int): number of output classes of the model (including the background).
min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
min_size (int): Images are rescaled before feeding them to the backbone:
we attempt to preserve the aspect ratio and scale the shorter edge
to ``min_size``. If the resulting longer edge exceeds ``max_size``,
then downscale so that the longer edge does not exceed ``max_size``.
This may result in the shorter edge beeing lower than ``min_size``.
max_size (int): See ``min_size``.
image_mean (Tuple[float, float, float]): mean values used for input normalization.
They are generally the mean values of the dataset on which the backbone has been trained
on
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment