Unverified Commit 8fe72d13 authored by Vasilis Vryniotis's avatar Vasilis Vryniotis Committed by GitHub
Browse files

Multi-pretrained weight support - initial API + ResNet50 (#4610)

* Adding lightweight API for models.

* Adding resnet50.

* Fix preset

* Add fake categories.

* Fixing mypy.

* Add string=>weight conversion support on Enums.

* Temporarily hardcoding imagenet categories.

* Minor refactoring.
parent 5b81c05c
from . import datasets
from . import models
from . import transforms
from collections import OrderedDict
from dataclasses import dataclass, fields
from enum import Enum
from typing import Any, Callable, Dict
from ..._internally_replaced_utils import load_state_dict_from_url
__all__ = ["Weights", "WeightEntry"]
@dataclass
class WeightEntry:
"""
This class is used to group important attributes associated with the pre-trained weights.
Args:
url (str): The location where we find the weights.
transforms (Callable): A callable that constructs the preprocessing method (or validation preset transforms)
needed to use the model. The reason we attach a constructor method rather than an already constructed
object is because the specific object might have memory and thus we want to delay initialization until
needed.
meta (Dict[str, Any]): Stores meta-data related to the weights of the model and its configuration. These can be
informative attributes (for example the number of parameters/flops, recipe link/methods used in training
etc), configuration parameters (for example the `num_classes`) needed to construct the model or important
meta-data (for example the `classes` of a classification model) needed to use the model.
"""
url: str
transforms: Callable
meta: Dict[str, Any]
class Weights(Enum):
"""
This class is the parent class of all model weights. Each model building method receives an optional `weights`
parameter with its associated pre-trained weights. It inherits from `Enum` and its values should be of type
`WeightEntry`.
Args:
value (WeightEntry): The data class entry with the weight information.
"""
def __init__(self, value: WeightEntry):
self._value_ = value
@classmethod
def verify(cls, obj: Any) -> Any:
if obj is not None:
if type(obj) is str:
obj = cls.from_str(obj)
elif not isinstance(obj, cls) and not isinstance(obj, WeightEntry):
raise TypeError(
f"Invalid Weight class provided; expected {cls.__name__} " f"but received {obj.__class__.__name__}."
)
return obj
@classmethod
def from_str(cls, value: str) -> "Weights":
for v in cls:
if v._name_ == value:
return v
raise ValueError(f"Invalid value {value} for enum {cls.__name__}.")
def state_dict(self, progress: bool) -> OrderedDict:
return load_state_dict_from_url(self.url, progress=progress)
def __repr__(self):
return f"{self.__class__.__name__}.{self._name_}"
def __getattr__(self, name):
# Be able to fetch WeightEntry attributes directly
for f in fields(WeightEntry):
if f.name == name:
return object.__getattribute__(self.value, name)
return super().__getattr__(name)
"""
This file is part of the private API. Please do not refer to any variables defined here directly as they will be
removed on future versions without warning.
"""
# This will eventually be replaced with a call at torchvision.datasets.find("imagenet").info.categories
_IMAGENET_CATEGORIES = [
"tench",
"goldfish",
"great white shark",
"tiger shark",
"hammerhead",
"electric ray",
"stingray",
"cock",
"hen",
"ostrich",
"brambling",
"goldfinch",
"house finch",
"junco",
"indigo bunting",
"robin",
"bulbul",
"jay",
"magpie",
"chickadee",
"water ouzel",
"kite",
"bald eagle",
"vulture",
"great grey owl",
"European fire salamander",
"common newt",
"eft",
"spotted salamander",
"axolotl",
"bullfrog",
"tree frog",
"tailed frog",
"loggerhead",
"leatherback turtle",
"mud turtle",
"terrapin",
"box turtle",
"banded gecko",
"common iguana",
"American chameleon",
"whiptail",
"agama",
"frilled lizard",
"alligator lizard",
"Gila monster",
"green lizard",
"African chameleon",
"Komodo dragon",
"African crocodile",
"American alligator",
"triceratops",
"thunder snake",
"ringneck snake",
"hognose snake",
"green snake",
"king snake",
"garter snake",
"water snake",
"vine snake",
"night snake",
"boa constrictor",
"rock python",
"Indian cobra",
"green mamba",
"sea snake",
"horned viper",
"diamondback",
"sidewinder",
"trilobite",
"harvestman",
"scorpion",
"black and gold garden spider",
"barn spider",
"garden spider",
"black widow",
"tarantula",
"wolf spider",
"tick",
"centipede",
"black grouse",
"ptarmigan",
"ruffed grouse",
"prairie chicken",
"peacock",
"quail",
"partridge",
"African grey",
"macaw",
"sulphur-crested cockatoo",
"lorikeet",
"coucal",
"bee eater",
"hornbill",
"hummingbird",
"jacamar",
"toucan",
"drake",
"red-breasted merganser",
"goose",
"black swan",
"tusker",
"echidna",
"platypus",
"wallaby",
"koala",
"wombat",
"jellyfish",
"sea anemone",
"brain coral",
"flatworm",
"nematode",
"conch",
"snail",
"slug",
"sea slug",
"chiton",
"chambered nautilus",
"Dungeness crab",
"rock crab",
"fiddler crab",
"king crab",
"American lobster",
"spiny lobster",
"crayfish",
"hermit crab",
"isopod",
"white stork",
"black stork",
"spoonbill",
"flamingo",
"little blue heron",
"American egret",
"bittern",
"crane",
"limpkin",
"European gallinule",
"American coot",
"bustard",
"ruddy turnstone",
"red-backed sandpiper",
"redshank",
"dowitcher",
"oystercatcher",
"pelican",
"king penguin",
"albatross",
"grey whale",
"killer whale",
"dugong",
"sea lion",
"Chihuahua",
"Japanese spaniel",
"Maltese dog",
"Pekinese",
"Shih-Tzu",
"Blenheim spaniel",
"papillon",
"toy terrier",
"Rhodesian ridgeback",
"Afghan hound",
"basset",
"beagle",
"bloodhound",
"bluetick",
"black-and-tan coonhound",
"Walker hound",
"English foxhound",
"redbone",
"borzoi",
"Irish wolfhound",
"Italian greyhound",
"whippet",
"Ibizan hound",
"Norwegian elkhound",
"otterhound",
"Saluki",
"Scottish deerhound",
"Weimaraner",
"Staffordshire bullterrier",
"American Staffordshire terrier",
"Bedlington terrier",
"Border terrier",
"Kerry blue terrier",
"Irish terrier",
"Norfolk terrier",
"Norwich terrier",
"Yorkshire terrier",
"wire-haired fox terrier",
"Lakeland terrier",
"Sealyham terrier",
"Airedale",
"cairn",
"Australian terrier",
"Dandie Dinmont",
"Boston bull",
"miniature schnauzer",
"giant schnauzer",
"standard schnauzer",
"Scotch terrier",
"Tibetan terrier",
"silky terrier",
"soft-coated wheaten terrier",
"West Highland white terrier",
"Lhasa",
"flat-coated retriever",
"curly-coated retriever",
"golden retriever",
"Labrador retriever",
"Chesapeake Bay retriever",
"German short-haired pointer",
"vizsla",
"English setter",
"Irish setter",
"Gordon setter",
"Brittany spaniel",
"clumber",
"English springer",
"Welsh springer spaniel",
"cocker spaniel",
"Sussex spaniel",
"Irish water spaniel",
"kuvasz",
"schipperke",
"groenendael",
"malinois",
"briard",
"kelpie",
"komondor",
"Old English sheepdog",
"Shetland sheepdog",
"collie",
"Border collie",
"Bouvier des Flandres",
"Rottweiler",
"German shepherd",
"Doberman",
"miniature pinscher",
"Greater Swiss Mountain dog",
"Bernese mountain dog",
"Appenzeller",
"EntleBucher",
"boxer",
"bull mastiff",
"Tibetan mastiff",
"French bulldog",
"Great Dane",
"Saint Bernard",
"Eskimo dog",
"malamute",
"Siberian husky",
"dalmatian",
"affenpinscher",
"basenji",
"pug",
"Leonberg",
"Newfoundland",
"Great Pyrenees",
"Samoyed",
"Pomeranian",
"chow",
"keeshond",
"Brabancon griffon",
"Pembroke",
"Cardigan",
"toy poodle",
"miniature poodle",
"standard poodle",
"Mexican hairless",
"timber wolf",
"white wolf",
"red wolf",
"coyote",
"dingo",
"dhole",
"African hunting dog",
"hyena",
"red fox",
"kit fox",
"Arctic fox",
"grey fox",
"tabby",
"tiger cat",
"Persian cat",
"Siamese cat",
"Egyptian cat",
"cougar",
"lynx",
"leopard",
"snow leopard",
"jaguar",
"lion",
"tiger",
"cheetah",
"brown bear",
"American black bear",
"ice bear",
"sloth bear",
"mongoose",
"meerkat",
"tiger beetle",
"ladybug",
"ground beetle",
"long-horned beetle",
"leaf beetle",
"dung beetle",
"rhinoceros beetle",
"weevil",
"fly",
"bee",
"ant",
"grasshopper",
"cricket",
"walking stick",
"cockroach",
"mantis",
"cicada",
"leafhopper",
"lacewing",
"dragonfly",
"damselfly",
"admiral",
"ringlet",
"monarch",
"cabbage butterfly",
"sulphur butterfly",
"lycaenid",
"starfish",
"sea urchin",
"sea cucumber",
"wood rabbit",
"hare",
"Angora",
"hamster",
"porcupine",
"fox squirrel",
"marmot",
"beaver",
"guinea pig",
"sorrel",
"zebra",
"hog",
"wild boar",
"warthog",
"hippopotamus",
"ox",
"water buffalo",
"bison",
"ram",
"bighorn",
"ibex",
"hartebeest",
"impala",
"gazelle",
"Arabian camel",
"llama",
"weasel",
"mink",
"polecat",
"black-footed ferret",
"otter",
"skunk",
"badger",
"armadillo",
"three-toed sloth",
"orangutan",
"gorilla",
"chimpanzee",
"gibbon",
"siamang",
"guenon",
"patas",
"baboon",
"macaque",
"langur",
"colobus",
"proboscis monkey",
"marmoset",
"capuchin",
"howler monkey",
"titi",
"spider monkey",
"squirrel monkey",
"Madagascar cat",
"indri",
"Indian elephant",
"African elephant",
"lesser panda",
"giant panda",
"barracouta",
"eel",
"coho",
"rock beauty",
"anemone fish",
"sturgeon",
"gar",
"lionfish",
"puffer",
"abacus",
"abaya",
"academic gown",
"accordion",
"acoustic guitar",
"aircraft carrier",
"airliner",
"airship",
"altar",
"ambulance",
"amphibian",
"analog clock",
"apiary",
"apron",
"ashcan",
"assault rifle",
"backpack",
"bakery",
"balance beam",
"balloon",
"ballpoint",
"Band Aid",
"banjo",
"bannister",
"barbell",
"barber chair",
"barbershop",
"barn",
"barometer",
"barrel",
"barrow",
"baseball",
"basketball",
"bassinet",
"bassoon",
"bathing cap",
"bath towel",
"bathtub",
"beach wagon",
"beacon",
"beaker",
"bearskin",
"beer bottle",
"beer glass",
"bell cote",
"bib",
"bicycle-built-for-two",
"bikini",
"binder",
"binoculars",
"birdhouse",
"boathouse",
"bobsled",
"bolo tie",
"bonnet",
"bookcase",
"bookshop",
"bottlecap",
"bow",
"bow tie",
"brass",
"brassiere",
"breakwater",
"breastplate",
"broom",
"bucket",
"buckle",
"bulletproof vest",
"bullet train",
"butcher shop",
"cab",
"caldron",
"candle",
"cannon",
"canoe",
"can opener",
"cardigan",
"car mirror",
"carousel",
"carpenter's kit",
"carton",
"car wheel",
"cash machine",
"cassette",
"cassette player",
"castle",
"catamaran",
"CD player",
"cello",
"cellular telephone",
"chain",
"chainlink fence",
"chain mail",
"chain saw",
"chest",
"chiffonier",
"chime",
"china cabinet",
"Christmas stocking",
"church",
"cinema",
"cleaver",
"cliff dwelling",
"cloak",
"clog",
"cocktail shaker",
"coffee mug",
"coffeepot",
"coil",
"combination lock",
"computer keyboard",
"confectionery",
"container ship",
"convertible",
"corkscrew",
"cornet",
"cowboy boot",
"cowboy hat",
"cradle",
"crane",
"crash helmet",
"crate",
"crib",
"Crock Pot",
"croquet ball",
"crutch",
"cuirass",
"dam",
"desk",
"desktop computer",
"dial telephone",
"diaper",
"digital clock",
"digital watch",
"dining table",
"dishrag",
"dishwasher",
"disk brake",
"dock",
"dogsled",
"dome",
"doormat",
"drilling platform",
"drum",
"drumstick",
"dumbbell",
"Dutch oven",
"electric fan",
"electric guitar",
"electric locomotive",
"entertainment center",
"envelope",
"espresso maker",
"face powder",
"feather boa",
"file",
"fireboat",
"fire engine",
"fire screen",
"flagpole",
"flute",
"folding chair",
"football helmet",
"forklift",
"fountain",
"fountain pen",
"four-poster",
"freight car",
"French horn",
"frying pan",
"fur coat",
"garbage truck",
"gasmask",
"gas pump",
"goblet",
"go-kart",
"golf ball",
"golfcart",
"gondola",
"gong",
"gown",
"grand piano",
"greenhouse",
"grille",
"grocery store",
"guillotine",
"hair slide",
"hair spray",
"half track",
"hammer",
"hamper",
"hand blower",
"hand-held computer",
"handkerchief",
"hard disc",
"harmonica",
"harp",
"harvester",
"hatchet",
"holster",
"home theater",
"honeycomb",
"hook",
"hoopskirt",
"horizontal bar",
"horse cart",
"hourglass",
"iPod",
"iron",
"jack-o'-lantern",
"jean",
"jeep",
"jersey",
"jigsaw puzzle",
"jinrikisha",
"joystick",
"kimono",
"knee pad",
"knot",
"lab coat",
"ladle",
"lampshade",
"laptop",
"lawn mower",
"lens cap",
"letter opener",
"library",
"lifeboat",
"lighter",
"limousine",
"liner",
"lipstick",
"Loafer",
"lotion",
"loudspeaker",
"loupe",
"lumbermill",
"magnetic compass",
"mailbag",
"mailbox",
"maillot",
"maillot",
"manhole cover",
"maraca",
"marimba",
"mask",
"matchstick",
"maypole",
"maze",
"measuring cup",
"medicine chest",
"megalith",
"microphone",
"microwave",
"military uniform",
"milk can",
"minibus",
"miniskirt",
"minivan",
"missile",
"mitten",
"mixing bowl",
"mobile home",
"Model T",
"modem",
"monastery",
"monitor",
"moped",
"mortar",
"mortarboard",
"mosque",
"mosquito net",
"motor scooter",
"mountain bike",
"mountain tent",
"mouse",
"mousetrap",
"moving van",
"muzzle",
"nail",
"neck brace",
"necklace",
"nipple",
"notebook",
"obelisk",
"oboe",
"ocarina",
"odometer",
"oil filter",
"organ",
"oscilloscope",
"overskirt",
"oxcart",
"oxygen mask",
"packet",
"paddle",
"paddlewheel",
"padlock",
"paintbrush",
"pajama",
"palace",
"panpipe",
"paper towel",
"parachute",
"parallel bars",
"park bench",
"parking meter",
"passenger car",
"patio",
"pay-phone",
"pedestal",
"pencil box",
"pencil sharpener",
"perfume",
"Petri dish",
"photocopier",
"pick",
"pickelhaube",
"picket fence",
"pickup",
"pier",
"piggy bank",
"pill bottle",
"pillow",
"ping-pong ball",
"pinwheel",
"pirate",
"pitcher",
"plane",
"planetarium",
"plastic bag",
"plate rack",
"plow",
"plunger",
"Polaroid camera",
"pole",
"police van",
"poncho",
"pool table",
"pop bottle",
"pot",
"potter's wheel",
"power drill",
"prayer rug",
"printer",
"prison",
"projectile",
"projector",
"puck",
"punching bag",
"purse",
"quill",
"quilt",
"racer",
"racket",
"radiator",
"radio",
"radio telescope",
"rain barrel",
"recreational vehicle",
"reel",
"reflex camera",
"refrigerator",
"remote control",
"restaurant",
"revolver",
"rifle",
"rocking chair",
"rotisserie",
"rubber eraser",
"rugby ball",
"rule",
"running shoe",
"safe",
"safety pin",
"saltshaker",
"sandal",
"sarong",
"sax",
"scabbard",
"scale",
"school bus",
"schooner",
"scoreboard",
"screen",
"screw",
"screwdriver",
"seat belt",
"sewing machine",
"shield",
"shoe shop",
"shoji",
"shopping basket",
"shopping cart",
"shovel",
"shower cap",
"shower curtain",
"ski",
"ski mask",
"sleeping bag",
"slide rule",
"sliding door",
"slot",
"snorkel",
"snowmobile",
"snowplow",
"soap dispenser",
"soccer ball",
"sock",
"solar dish",
"sombrero",
"soup bowl",
"space bar",
"space heater",
"space shuttle",
"spatula",
"speedboat",
"spider web",
"spindle",
"sports car",
"spotlight",
"stage",
"steam locomotive",
"steel arch bridge",
"steel drum",
"stethoscope",
"stole",
"stone wall",
"stopwatch",
"stove",
"strainer",
"streetcar",
"stretcher",
"studio couch",
"stupa",
"submarine",
"suit",
"sundial",
"sunglass",
"sunglasses",
"sunscreen",
"suspension bridge",
"swab",
"sweatshirt",
"swimming trunks",
"swing",
"switch",
"syringe",
"table lamp",
"tank",
"tape player",
"teapot",
"teddy",
"television",
"tennis ball",
"thatch",
"theater curtain",
"thimble",
"thresher",
"throne",
"tile roof",
"toaster",
"tobacco shop",
"toilet seat",
"torch",
"totem pole",
"tow truck",
"toyshop",
"tractor",
"trailer truck",
"tray",
"trench coat",
"tricycle",
"trimaran",
"tripod",
"triumphal arch",
"trolleybus",
"trombone",
"tub",
"turnstile",
"typewriter keyboard",
"umbrella",
"unicycle",
"upright",
"vacuum",
"vase",
"vault",
"velvet",
"vending machine",
"vestment",
"viaduct",
"violin",
"volleyball",
"waffle iron",
"wall clock",
"wallet",
"wardrobe",
"warplane",
"washbasin",
"washer",
"water bottle",
"water jug",
"water tower",
"whiskey jug",
"whistle",
"wig",
"window screen",
"window shade",
"Windsor tie",
"wine bottle",
"wing",
"wok",
"wooden spoon",
"wool",
"worm fence",
"wreck",
"yawl",
"yurt",
"web site",
"comic book",
"crossword puzzle",
"street sign",
"traffic light",
"book jacket",
"menu",
"plate",
"guacamole",
"consomme",
"hot pot",
"trifle",
"ice cream",
"ice lolly",
"French loaf",
"bagel",
"pretzel",
"cheeseburger",
"hotdog",
"mashed potato",
"head cabbage",
"broccoli",
"cauliflower",
"zucchini",
"spaghetti squash",
"acorn squash",
"butternut squash",
"cucumber",
"artichoke",
"bell pepper",
"cardoon",
"mushroom",
"Granny Smith",
"strawberry",
"orange",
"lemon",
"fig",
"pineapple",
"banana",
"jackfruit",
"custard apple",
"pomegranate",
"hay",
"carbonara",
"chocolate sauce",
"dough",
"meat loaf",
"pizza",
"potpie",
"burrito",
"red wine",
"espresso",
"cup",
"eggnog",
"alp",
"bubble",
"cliff",
"coral reef",
"geyser",
"lakeside",
"promontory",
"sandbar",
"seashore",
"valley",
"volcano",
"ballplayer",
"groom",
"scuba diver",
"rapeseed",
"daisy",
"yellow lady's slipper",
"corn",
"acorn",
"hip",
"buckeye",
"coral fungus",
"agaric",
"gyromitra",
"stinkhorn",
"earthstar",
"hen-of-the-woods",
"bolete",
"ear",
"toilet tissue",
]
import warnings
from functools import partial
from typing import Any, List, Optional, Type, Union
from ...models.resnet import BasicBlock, Bottleneck, ResNet
from ..transforms.presets import ImageNetEval
from ._api import Weights, WeightEntry
from ._meta import _IMAGENET_CATEGORIES
__all__ = ["ResNet", "ResNet50Weights", "resnet50"]
def _resnet(
block: Type[Union[BasicBlock, Bottleneck]],
layers: List[int],
weights: Optional[Weights],
progress: bool,
**kwargs: Any,
) -> ResNet:
if weights is not None:
kwargs["num_classes"] = len(weights.meta["categories"])
model = ResNet(block, layers, **kwargs)
if weights is not None:
model.load_state_dict(weights.state_dict(progress=progress))
return model
_common_meta = {
"size": (224, 224),
"categories": _IMAGENET_CATEGORIES,
}
class ResNet50Weights(Weights):
ImageNet1K_RefV1 = WeightEntry(
url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
transforms=partial(ImageNetEval, crop_size=224),
meta={
**_common_meta,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification",
"acc@1": 76.130,
"acc@5": 92.862,
},
)
ImageNet1K_RefV2 = WeightEntry(
url="https://download.pytorch.org/models/resnet50-tmp.pth",
transforms=partial(ImageNetEval, crop_size=224),
meta={
**_common_meta,
"recipe": "https://github.com/pytorch/vision/issues/3995",
"acc@1": 80.352,
"acc@5": 95.148,
},
)
def resnet50(weights: Optional[ResNet50Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
if "pretrained" in kwargs:
warnings.warn("The argument pretrained is deprecated, please use weights instead.")
weights = ResNet50Weights.ImageNet1K_RefV1 if kwargs.pop("pretrained") else None
weights = ResNet50Weights.verify(weights)
return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
from typing import Tuple
import torch
from torch import Tensor, nn
from ... import transforms as T
from ...transforms import functional as F
__all__ = ["ConvertImageDtype", "ImageNetEval"]
# Allows handling of both PIL and Tensor images
class ConvertImageDtype(nn.Module):
def __init__(self, dtype: torch.dtype) -> None:
super().__init__()
self.dtype = dtype
def forward(self, img: Tensor) -> Tensor:
if not isinstance(img, Tensor):
img = F.pil_to_tensor(img)
return F.convert_image_dtype(img, self.dtype)
class ImageNetEval:
def __init__(
self,
crop_size: int,
resize_size: int = 256,
mean: Tuple[float, ...] = (0.485, 0.456, 0.406),
std: Tuple[float, ...] = (0.229, 0.224, 0.225),
interpolation: T.InterpolationMode = T.InterpolationMode.BILINEAR,
) -> None:
self.transforms = T.Compose(
[
T.Resize(resize_size, interpolation=interpolation),
T.CenterCrop(crop_size),
ConvertImageDtype(dtype=torch.float),
T.Normalize(mean=mean, std=std),
]
)
def __call__(self, img: Tensor) -> Tensor:
return self.transforms(img)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment