Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
8f198e53
Unverified
Commit
8f198e53
authored
Feb 16, 2023
by
Aditya Oke
Committed by
GitHub
Feb 16, 2023
Browse files
Fix dropout issue in swin transformers (#7224)
Co-authored-by:
Nicolas Hug
<
contact@nicolas-hug.com
>
parent
55d3ba62
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
13 additions
and
6 deletions
+13
-6
torchvision/models/swin_transformer.py
torchvision/models/swin_transformer.py
+8
-4
torchvision/models/video/swin_transformer.py
torchvision/models/video/swin_transformer.py
+5
-2
No files found.
torchvision/models/swin_transformer.py
View file @
8f198e53
...
@@ -126,7 +126,8 @@ def shifted_window_attention(
...
@@ -126,7 +126,8 @@ def shifted_window_attention(
qkv_bias
:
Optional
[
Tensor
]
=
None
,
qkv_bias
:
Optional
[
Tensor
]
=
None
,
proj_bias
:
Optional
[
Tensor
]
=
None
,
proj_bias
:
Optional
[
Tensor
]
=
None
,
logit_scale
:
Optional
[
torch
.
Tensor
]
=
None
,
logit_scale
:
Optional
[
torch
.
Tensor
]
=
None
,
):
training
:
bool
=
True
,
)
->
Tensor
:
"""
"""
Window based multi-head self attention (W-MSA) module with relative position bias.
Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
It supports both of shifted and non-shifted window.
...
@@ -143,6 +144,7 @@ def shifted_window_attention(
...
@@ -143,6 +144,7 @@ def shifted_window_attention(
qkv_bias (Tensor[out_dim], optional): The bias tensor of query, key, value. Default: None.
qkv_bias (Tensor[out_dim], optional): The bias tensor of query, key, value. Default: None.
proj_bias (Tensor[out_dim], optional): The bias tensor of projection. Default: None.
proj_bias (Tensor[out_dim], optional): The bias tensor of projection. Default: None.
logit_scale (Tensor[out_dim], optional): Logit scale of cosine attention for Swin Transformer V2. Default: None.
logit_scale (Tensor[out_dim], optional): Logit scale of cosine attention for Swin Transformer V2. Default: None.
training (bool, optional): Training flag used by the dropout parameters. Default: True.
Returns:
Returns:
Tensor[N, H, W, C]: The output tensor after shifted window attention.
Tensor[N, H, W, C]: The output tensor after shifted window attention.
"""
"""
...
@@ -207,11 +209,11 @@ def shifted_window_attention(
...
@@ -207,11 +209,11 @@ def shifted_window_attention(
attn
=
attn
.
view
(
-
1
,
num_heads
,
x
.
size
(
1
),
x
.
size
(
1
))
attn
=
attn
.
view
(
-
1
,
num_heads
,
x
.
size
(
1
),
x
.
size
(
1
))
attn
=
F
.
softmax
(
attn
,
dim
=-
1
)
attn
=
F
.
softmax
(
attn
,
dim
=-
1
)
attn
=
F
.
dropout
(
attn
,
p
=
attention_dropout
)
attn
=
F
.
dropout
(
attn
,
p
=
attention_dropout
,
training
=
training
)
x
=
attn
.
matmul
(
v
).
transpose
(
1
,
2
).
reshape
(
x
.
size
(
0
),
x
.
size
(
1
),
C
)
x
=
attn
.
matmul
(
v
).
transpose
(
1
,
2
).
reshape
(
x
.
size
(
0
),
x
.
size
(
1
),
C
)
x
=
F
.
linear
(
x
,
proj_weight
,
proj_bias
)
x
=
F
.
linear
(
x
,
proj_weight
,
proj_bias
)
x
=
F
.
dropout
(
x
,
p
=
dropout
)
x
=
F
.
dropout
(
x
,
p
=
dropout
,
training
=
training
)
# reverse windows
# reverse windows
x
=
x
.
view
(
B
,
pad_H
//
window_size
[
0
],
pad_W
//
window_size
[
1
],
window_size
[
0
],
window_size
[
1
],
C
)
x
=
x
.
view
(
B
,
pad_H
//
window_size
[
0
],
pad_W
//
window_size
[
1
],
window_size
[
0
],
window_size
[
1
],
C
)
...
@@ -286,7 +288,7 @@ class ShiftedWindowAttention(nn.Module):
...
@@ -286,7 +288,7 @@ class ShiftedWindowAttention(nn.Module):
self
.
relative_position_bias_table
,
self
.
relative_position_index
,
self
.
window_size
# type: ignore[arg-type]
self
.
relative_position_bias_table
,
self
.
relative_position_index
,
self
.
window_size
# type: ignore[arg-type]
)
)
def
forward
(
self
,
x
:
Tensor
):
def
forward
(
self
,
x
:
Tensor
)
->
Tensor
:
"""
"""
Args:
Args:
x (Tensor): Tensor with layout of [B, H, W, C]
x (Tensor): Tensor with layout of [B, H, W, C]
...
@@ -306,6 +308,7 @@ class ShiftedWindowAttention(nn.Module):
...
@@ -306,6 +308,7 @@ class ShiftedWindowAttention(nn.Module):
dropout
=
self
.
dropout
,
dropout
=
self
.
dropout
,
qkv_bias
=
self
.
qkv
.
bias
,
qkv_bias
=
self
.
qkv
.
bias
,
proj_bias
=
self
.
proj
.
bias
,
proj_bias
=
self
.
proj
.
bias
,
training
=
self
.
training
,
)
)
...
@@ -391,6 +394,7 @@ class ShiftedWindowAttentionV2(ShiftedWindowAttention):
...
@@ -391,6 +394,7 @@ class ShiftedWindowAttentionV2(ShiftedWindowAttention):
qkv_bias
=
self
.
qkv
.
bias
,
qkv_bias
=
self
.
qkv
.
bias
,
proj_bias
=
self
.
proj
.
bias
,
proj_bias
=
self
.
proj
.
bias
,
logit_scale
=
self
.
logit_scale
,
logit_scale
=
self
.
logit_scale
,
training
=
self
.
training
,
)
)
...
...
torchvision/models/video/swin_transformer.py
View file @
8f198e53
...
@@ -124,6 +124,7 @@ def shifted_window_attention_3d(
...
@@ -124,6 +124,7 @@ def shifted_window_attention_3d(
dropout
:
float
=
0.0
,
dropout
:
float
=
0.0
,
qkv_bias
:
Optional
[
Tensor
]
=
None
,
qkv_bias
:
Optional
[
Tensor
]
=
None
,
proj_bias
:
Optional
[
Tensor
]
=
None
,
proj_bias
:
Optional
[
Tensor
]
=
None
,
training
:
bool
=
True
,
)
->
Tensor
:
)
->
Tensor
:
"""
"""
Window based multi-head self attention (W-MSA) module with relative position bias.
Window based multi-head self attention (W-MSA) module with relative position bias.
...
@@ -140,6 +141,7 @@ def shifted_window_attention_3d(
...
@@ -140,6 +141,7 @@ def shifted_window_attention_3d(
dropout (float): Dropout ratio of output. Default: 0.0.
dropout (float): Dropout ratio of output. Default: 0.0.
qkv_bias (Tensor[out_dim], optional): The bias tensor of query, key, value. Default: None.
qkv_bias (Tensor[out_dim], optional): The bias tensor of query, key, value. Default: None.
proj_bias (Tensor[out_dim], optional): The bias tensor of projection. Default: None.
proj_bias (Tensor[out_dim], optional): The bias tensor of projection. Default: None.
training (bool, optional): Training flag used by the dropout parameters. Default: True.
Returns:
Returns:
Tensor[B, T, H, W, C]: The output tensor after shifted window attention.
Tensor[B, T, H, W, C]: The output tensor after shifted window attention.
"""
"""
...
@@ -194,11 +196,11 @@ def shifted_window_attention_3d(
...
@@ -194,11 +196,11 @@ def shifted_window_attention_3d(
attn
=
attn
.
view
(
-
1
,
num_heads
,
x
.
size
(
1
),
x
.
size
(
1
))
attn
=
attn
.
view
(
-
1
,
num_heads
,
x
.
size
(
1
),
x
.
size
(
1
))
attn
=
F
.
softmax
(
attn
,
dim
=-
1
)
attn
=
F
.
softmax
(
attn
,
dim
=-
1
)
attn
=
F
.
dropout
(
attn
,
p
=
attention_dropout
)
attn
=
F
.
dropout
(
attn
,
p
=
attention_dropout
,
training
=
training
)
x
=
attn
.
matmul
(
v
).
transpose
(
1
,
2
).
reshape
(
x
.
size
(
0
),
x
.
size
(
1
),
c
)
x
=
attn
.
matmul
(
v
).
transpose
(
1
,
2
).
reshape
(
x
.
size
(
0
),
x
.
size
(
1
),
c
)
x
=
F
.
linear
(
x
,
proj_weight
,
proj_bias
)
x
=
F
.
linear
(
x
,
proj_weight
,
proj_bias
)
x
=
F
.
dropout
(
x
,
p
=
dropout
)
x
=
F
.
dropout
(
x
,
p
=
dropout
,
training
=
training
)
# reverse windows
# reverse windows
x
=
x
.
view
(
x
=
x
.
view
(
...
@@ -310,6 +312,7 @@ class ShiftedWindowAttention3d(nn.Module):
...
@@ -310,6 +312,7 @@ class ShiftedWindowAttention3d(nn.Module):
dropout
=
self
.
dropout
,
dropout
=
self
.
dropout
,
qkv_bias
=
self
.
qkv
.
bias
,
qkv_bias
=
self
.
qkv
.
bias
,
proj_bias
=
self
.
proj
.
bias
,
proj_bias
=
self
.
proj
.
bias
,
training
=
self
.
training
,
)
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment