Commit 74b6a750 authored by Ross Wightman's avatar Ross Wightman Committed by Francisco Massa
Browse files

Fix ResNeXt model defs with backwards compat for ResNet. (#852)

* Fix ResNeXt model defs with backwards compat for ResNet.

* Fix Python 2.x integer div issue
parent efa4322d
...@@ -29,12 +29,13 @@ def conv1x1(in_planes, out_planes, stride=1): ...@@ -29,12 +29,13 @@ def conv1x1(in_planes, out_planes, stride=1):
class BasicBlock(nn.Module): class BasicBlock(nn.Module):
expansion = 1 expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None): def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, norm_layer=None):
super(BasicBlock, self).__init__() super(BasicBlock, self).__init__()
if norm_layer is None: if norm_layer is None:
norm_layer = nn.BatchNorm2d norm_layer = nn.BatchNorm2d
if groups != 1: if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1') raise ValueError('BasicBlock only supports groups=1 and base_width=64')
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 # Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride) self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes) self.bn1 = norm_layer(planes)
...@@ -66,16 +67,18 @@ class BasicBlock(nn.Module): ...@@ -66,16 +67,18 @@ class BasicBlock(nn.Module):
class Bottleneck(nn.Module): class Bottleneck(nn.Module):
expansion = 4 expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, norm_layer=None): def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, norm_layer=None):
super(Bottleneck, self).__init__() super(Bottleneck, self).__init__()
if norm_layer is None: if norm_layer is None:
norm_layer = nn.BatchNorm2d norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
# Both self.conv2 and self.downsample layers downsample the input when stride != 1 # Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, planes) self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(planes) self.bn1 = norm_layer(width)
self.conv2 = conv3x3(planes, planes, stride, groups) self.conv2 = conv3x3(width, width, stride, groups)
self.bn2 = norm_layer(planes) self.bn2 = norm_layer(width)
self.conv3 = conv1x1(planes, planes * self.expansion) self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True) self.relu = nn.ReLU(inplace=True)
self.downsample = downsample self.downsample = downsample
...@@ -111,19 +114,21 @@ class ResNet(nn.Module): ...@@ -111,19 +114,21 @@ class ResNet(nn.Module):
super(ResNet, self).__init__() super(ResNet, self).__init__()
if norm_layer is None: if norm_layer is None:
norm_layer = nn.BatchNorm2d norm_layer = nn.BatchNorm2d
planes = [int(width_per_group * groups * 2 ** i) for i in range(4)]
self.inplanes = planes[0] self.inplanes = 64
self.conv1 = nn.Conv2d(3, planes[0], kernel_size=7, stride=2, padding=3, self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False) bias=False)
self.bn1 = norm_layer(planes[0]) self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True) self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, planes[0], layers[0], groups=groups, norm_layer=norm_layer) self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer)
self.layer2 = self._make_layer(block, planes[1], layers[1], stride=2, groups=groups, norm_layer=norm_layer) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer)
self.layer3 = self._make_layer(block, planes[2], layers[2], stride=2, groups=groups, norm_layer=norm_layer) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, norm_layer=norm_layer)
self.layer4 = self._make_layer(block, planes[3], layers[3], stride=2, groups=groups, norm_layer=norm_layer) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, norm_layer=norm_layer)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(planes[3] * block.expansion, num_classes) self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules(): for m in self.modules():
if isinstance(m, nn.Conv2d): if isinstance(m, nn.Conv2d):
...@@ -142,7 +147,7 @@ class ResNet(nn.Module): ...@@ -142,7 +147,7 @@ class ResNet(nn.Module):
elif isinstance(m, BasicBlock): elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0) nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, groups=1, norm_layer=None): def _make_layer(self, block, planes, blocks, stride=1, norm_layer=None):
if norm_layer is None: if norm_layer is None:
norm_layer = nn.BatchNorm2d norm_layer = nn.BatchNorm2d
downsample = None downsample = None
...@@ -153,10 +158,12 @@ class ResNet(nn.Module): ...@@ -153,10 +158,12 @@ class ResNet(nn.Module):
) )
layers = [] layers = []
layers.append(block(self.inplanes, planes, stride, downsample, groups, norm_layer)) layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, norm_layer))
self.inplanes = planes * block.expansion self.inplanes = planes * block.expansion
for _ in range(1, blocks): for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=groups, norm_layer=norm_layer)) layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, norm_layer=norm_layer))
return nn.Sequential(*layers) return nn.Sequential(*layers)
...@@ -239,14 +246,14 @@ def resnet152(pretrained=False, **kwargs): ...@@ -239,14 +246,14 @@ def resnet152(pretrained=False, **kwargs):
def resnext50_32x4d(pretrained=False, **kwargs): def resnext50_32x4d(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 6, 3], groups=4, width_per_group=32, **kwargs) model = ResNet(Bottleneck, [3, 4, 6, 3], groups=32, width_per_group=4, **kwargs)
# if pretrained: # if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) # model.load_state_dict(model_zoo.load_url(model_urls['resnext50_32x4d']))
return model return model
def resnext101_32x8d(pretrained=False, **kwargs): def resnext101_32x8d(pretrained=False, **kwargs):
model = ResNet(Bottleneck, [3, 4, 23, 3], groups=8, width_per_group=32, **kwargs) model = ResNet(Bottleneck, [3, 4, 23, 3], groups=32, width_per_group=8, **kwargs)
# if pretrained: # if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) # model.load_state_dict(model_zoo.load_url(model_urls['resnext101_32x8d']))
return model return model
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment