Unverified Commit 67f3ce28 authored by Philip Meier's avatar Philip Meier Committed by GitHub
Browse files

cleanup legacy transforms tests (#8013)

parent af3077e3
...@@ -406,6 +406,7 @@ def make_bounding_boxes( ...@@ -406,6 +406,7 @@ def make_bounding_boxes(
canvas_size=DEFAULT_SIZE, canvas_size=DEFAULT_SIZE,
*, *,
format=tv_tensors.BoundingBoxFormat.XYXY, format=tv_tensors.BoundingBoxFormat.XYXY,
num_boxes=1,
dtype=None, dtype=None,
device="cpu", device="cpu",
): ):
...@@ -419,8 +420,7 @@ def make_bounding_boxes( ...@@ -419,8 +420,7 @@ def make_bounding_boxes(
dtype = dtype or torch.float32 dtype = dtype or torch.float32
num_objects = 1 h, w = [torch.randint(1, s, (num_boxes,)) for s in canvas_size]
h, w = [torch.randint(1, s, (num_objects,)) for s in canvas_size]
y = sample_position(h, canvas_size[0]) y = sample_position(h, canvas_size[0])
x = sample_position(w, canvas_size[1]) x = sample_position(w, canvas_size[1])
...@@ -443,12 +443,11 @@ def make_bounding_boxes( ...@@ -443,12 +443,11 @@ def make_bounding_boxes(
) )
def make_detection_mask(size=DEFAULT_SIZE, *, dtype=None, device="cpu"): def make_detection_masks(size=DEFAULT_SIZE, *, num_masks=1, dtype=None, device="cpu"):
"""Make a "detection" mask, i.e. (*, N, H, W), where each object is encoded as one of N boolean masks""" """Make a "detection" mask, i.e. (*, N, H, W), where each object is encoded as one of N boolean masks"""
num_objects = 1
return tv_tensors.Mask( return tv_tensors.Mask(
torch.testing.make_tensor( torch.testing.make_tensor(
(num_objects, *size), (num_masks, *size),
low=0, low=0,
high=2, high=2,
dtype=dtype or torch.bool, dtype=dtype or torch.bool,
......
This diff is collapsed.
import importlib.machinery import importlib.machinery
import importlib.util import importlib.util
import inspect
import random import random
import re
from pathlib import Path from pathlib import Path
import numpy as np
import pytest import pytest
import torch import torch
import torchvision.transforms.v2 as v2_transforms import torchvision.transforms.v2 as v2_transforms
from common_utils import assert_close, assert_equal, set_rng_seed from common_utils import assert_equal
from torchvision import transforms as legacy_transforms, tv_tensors from torchvision import tv_tensors
from torchvision.transforms import functional as legacy_F from torchvision.transforms import functional as legacy_F
from torchvision.transforms.v2 import functional as prototype_F from torchvision.transforms.v2 import functional as prototype_F
from torchvision.transforms.v2._utils import _get_fill, query_size from torchvision.transforms.v2._utils import _get_fill, query_size
from torchvision.transforms.v2.functional import to_pil_image from torchvision.transforms.v2.functional import to_pil_image
from transforms_v2_legacy_utils import (
ArgsKwargs,
make_bounding_boxes,
make_detection_mask,
make_image,
make_images,
make_segmentation_mask,
)
DEFAULT_MAKE_IMAGES_KWARGS = dict(color_spaces=["RGB"], extra_dims=[(4,)])
@pytest.fixture(autouse=True)
def fix_rng_seed():
set_rng_seed(0)
yield
class NotScriptableArgsKwargs(ArgsKwargs):
"""
This class is used to mark parameters that render the transform non-scriptable. They still work in eager mode and
thus will be tested there, but will be skipped by the JIT tests.
"""
pass
class ConsistencyConfig:
def __init__(
self,
prototype_cls,
legacy_cls,
# If no args_kwargs is passed, only the signature will be checked
args_kwargs=(),
make_images_kwargs=None,
supports_pil=True,
removed_params=(),
closeness_kwargs=None,
):
self.prototype_cls = prototype_cls
self.legacy_cls = legacy_cls
self.args_kwargs = args_kwargs
self.make_images_kwargs = make_images_kwargs or DEFAULT_MAKE_IMAGES_KWARGS
self.supports_pil = supports_pil
self.removed_params = removed_params
self.closeness_kwargs = closeness_kwargs or dict(rtol=0, atol=0)
# These are here since both the prototype and legacy transform need to be constructed with the same random parameters
LINEAR_TRANSFORMATION_MEAN = torch.rand(36)
LINEAR_TRANSFORMATION_MATRIX = torch.rand([LINEAR_TRANSFORMATION_MEAN.numel()] * 2)
CONSISTENCY_CONFIGS = []
def check_call_consistency(
prototype_transform, legacy_transform, images=None, supports_pil=True, closeness_kwargs=None
):
if images is None:
images = make_images(**DEFAULT_MAKE_IMAGES_KWARGS)
closeness_kwargs = closeness_kwargs or dict()
for image in images:
image_repr = f"[{tuple(image.shape)}, {str(image.dtype).rsplit('.')[-1]}]"
image_tensor = torch.Tensor(image)
try:
torch.manual_seed(0)
output_legacy_tensor = legacy_transform(image_tensor)
except Exception as exc:
raise pytest.UsageError(
f"Transforming a tensor image {image_repr} failed in the legacy transform with the "
f"error above. This means that you need to specify the parameters passed to `make_images` through the "
"`make_images_kwargs` of the `ConsistencyConfig`."
) from exc
try:
torch.manual_seed(0)
output_prototype_tensor = prototype_transform(image_tensor)
except Exception as exc:
raise AssertionError(
f"Transforming a tensor image with shape {image_repr} failed in the prototype transform with "
f"the error above. This means there is a consistency bug either in `_get_params` or in the "
f"`is_pure_tensor` path in `_transform`."
) from exc
assert_close(
output_prototype_tensor,
output_legacy_tensor,
msg=lambda msg: f"Tensor image consistency check failed with: \n\n{msg}",
**closeness_kwargs,
)
try:
torch.manual_seed(0)
output_prototype_image = prototype_transform(image)
except Exception as exc:
raise AssertionError(
f"Transforming a image tv_tensor with shape {image_repr} failed in the prototype transform with "
f"the error above. This means there is a consistency bug either in `_get_params` or in the "
f"`tv_tensors.Image` path in `_transform`."
) from exc
assert_close(
output_prototype_image,
output_prototype_tensor,
msg=lambda msg: f"Output for tv_tensor and tensor images is not equal: \n\n{msg}",
**closeness_kwargs,
)
if image.ndim == 3 and supports_pil:
image_pil = to_pil_image(image)
try:
torch.manual_seed(0)
output_legacy_pil = legacy_transform(image_pil)
except Exception as exc:
raise pytest.UsageError(
f"Transforming a PIL image with shape {image_repr} failed in the legacy transform with the "
f"error above. If this transform does not support PIL images, set `supports_pil=False` on the "
"`ConsistencyConfig`. "
) from exc
try:
torch.manual_seed(0)
output_prototype_pil = prototype_transform(image_pil)
except Exception as exc:
raise AssertionError(
f"Transforming a PIL image with shape {image_repr} failed in the prototype transform with "
f"the error above. This means there is a consistency bug either in `_get_params` or in the "
f"`PIL.Image.Image` path in `_transform`."
) from exc
assert_close(
output_prototype_pil,
output_legacy_pil,
msg=lambda msg: f"PIL image consistency check failed with: \n\n{msg}",
**closeness_kwargs,
)
@pytest.mark.parametrize(
("config", "args_kwargs"),
[
pytest.param(
config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
)
for config in CONSISTENCY_CONFIGS
for idx, args_kwargs in enumerate(config.args_kwargs)
],
)
@pytest.mark.filterwarnings("ignore")
def test_call_consistency(config, args_kwargs):
args, kwargs = args_kwargs
try:
legacy_transform = config.legacy_cls(*args, **kwargs)
except Exception as exc:
raise pytest.UsageError(
f"Initializing the legacy transform failed with the error above. "
f"Please correct the `ArgsKwargs({args_kwargs})` in the `ConsistencyConfig`."
) from exc
try:
prototype_transform = config.prototype_cls(*args, **kwargs)
except Exception as exc:
raise AssertionError(
"Initializing the prototype transform failed with the error above. "
"This means there is a consistency bug in the constructor."
) from exc
check_call_consistency(
prototype_transform,
legacy_transform,
images=make_images(**config.make_images_kwargs),
supports_pil=config.supports_pil,
closeness_kwargs=config.closeness_kwargs,
)
@pytest.mark.parametrize(
("config", "args_kwargs"),
[
pytest.param(
config, args_kwargs, id=f"{config.legacy_cls.__name__}-{idx:0{len(str(len(config.args_kwargs)))}d}"
)
for config in CONSISTENCY_CONFIGS
for idx, args_kwargs in enumerate(config.args_kwargs)
if not isinstance(args_kwargs, NotScriptableArgsKwargs)
],
)
def test_jit_consistency(config, args_kwargs):
args, kwargs = args_kwargs
prototype_transform_eager = config.prototype_cls(*args, **kwargs)
legacy_transform_eager = config.legacy_cls(*args, **kwargs)
legacy_transform_scripted = torch.jit.script(legacy_transform_eager) from transforms_v2_legacy_utils import make_bounding_boxes, make_detection_mask, make_image, make_segmentation_mask
prototype_transform_scripted = torch.jit.script(prototype_transform_eager)
for image in make_images(**config.make_images_kwargs):
image = image.as_subclass(torch.Tensor)
torch.manual_seed(0)
output_legacy_scripted = legacy_transform_scripted(image)
torch.manual_seed(0)
output_prototype_scripted = prototype_transform_scripted(image)
assert_close(output_prototype_scripted, output_legacy_scripted, **config.closeness_kwargs)
class TestToTensorTransforms:
def test_pil_to_tensor(self):
prototype_transform = v2_transforms.PILToTensor()
legacy_transform = legacy_transforms.PILToTensor()
for image in make_images(extra_dims=[()]):
image_pil = to_pil_image(image)
assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))
def test_to_tensor(self):
with pytest.warns(UserWarning, match=re.escape("The transform `ToTensor()` is deprecated")):
prototype_transform = v2_transforms.ToTensor()
legacy_transform = legacy_transforms.ToTensor()
for image in make_images(extra_dims=[()]):
image_pil = to_pil_image(image)
image_numpy = np.array(image_pil)
assert_equal(prototype_transform(image_pil), legacy_transform(image_pil))
assert_equal(prototype_transform(image_numpy), legacy_transform(image_numpy))
def import_transforms_from_references(reference): def import_transforms_from_references(reference):
...@@ -447,54 +212,3 @@ class TestRefSegTransforms: ...@@ -447,54 +212,3 @@ class TestRefSegTransforms:
) )
def test_common(self, t_ref, t, data_kwargs): def test_common(self, t_ref, t, data_kwargs):
self.check(t, t_ref, data_kwargs) self.check(t, t_ref, data_kwargs)
@pytest.mark.parametrize(
("legacy_dispatcher", "name_only_params"),
[
(legacy_F.get_dimensions, {}),
(legacy_F.get_image_size, {}),
(legacy_F.get_image_num_channels, {}),
(legacy_F.to_tensor, {}),
(legacy_F.pil_to_tensor, {}),
(legacy_F.convert_image_dtype, {}),
(legacy_F.to_pil_image, {}),
(legacy_F.to_grayscale, {}),
(legacy_F.rgb_to_grayscale, {}),
(legacy_F.to_tensor, {}),
],
)
def test_dispatcher_signature_consistency(legacy_dispatcher, name_only_params):
legacy_signature = inspect.signature(legacy_dispatcher)
legacy_params = list(legacy_signature.parameters.values())[1:]
try:
prototype_dispatcher = getattr(prototype_F, legacy_dispatcher.__name__)
except AttributeError:
raise AssertionError(
f"Legacy dispatcher `F.{legacy_dispatcher.__name__}` has no prototype equivalent"
) from None
prototype_signature = inspect.signature(prototype_dispatcher)
prototype_params = list(prototype_signature.parameters.values())[1:]
# Some dispatchers got extra parameters. This makes sure they have a default argument and thus are BC. We don't
# need to check if parameters were added in the middle rather than at the end, since that will be caught by the
# regular check below.
prototype_params, new_prototype_params = (
prototype_params[: len(legacy_params)],
prototype_params[len(legacy_params) :],
)
for param in new_prototype_params:
assert param.default is not param.empty
# Some annotations were changed mostly to supersets of what was there before. Plus, some legacy dispatchers had no
# annotations. In these cases we simply drop the annotation and default argument from the comparison
for prototype_param, legacy_param in zip(prototype_params, legacy_params):
if legacy_param.name in name_only_params:
prototype_param._annotation = prototype_param._default = inspect.Parameter.empty
legacy_param._annotation = legacy_param._default = inspect.Parameter.empty
elif legacy_param.annotation is inspect.Parameter.empty:
prototype_param._annotation = inspect.Parameter.empty
assert prototype_params == legacy_params
import numpy as np
import PIL.Image
import pytest
import torch
from torchvision.transforms.v2 import functional as F
@pytest.mark.parametrize(
("alias", "target"),
[
pytest.param(alias, target, id=alias.__name__)
for alias, target in [
(F.hflip, F.horizontal_flip),
(F.vflip, F.vertical_flip),
(F.get_image_num_channels, F.get_num_channels),
(F.to_pil_image, F.to_pil_image),
(F.elastic_transform, F.elastic),
(F.to_grayscale, F.rgb_to_grayscale),
]
],
)
def test_alias(alias, target):
assert alias is target
@pytest.mark.parametrize(
"inpt",
[
127 * np.ones((32, 32, 3), dtype="uint8"),
PIL.Image.new("RGB", (32, 32), 122),
],
)
def test_to_image(inpt):
output = F.to_image(inpt)
assert isinstance(output, torch.Tensor)
assert output.shape == (3, 32, 32)
assert np.asarray(inpt).sum() == output.sum().item()
@pytest.mark.parametrize(
"inpt",
[
torch.randint(0, 256, size=(3, 32, 32), dtype=torch.uint8),
127 * np.ones((32, 32, 3), dtype="uint8"),
],
)
@pytest.mark.parametrize("mode", [None, "RGB"])
def test_to_pil_image(inpt, mode):
output = F.to_pil_image(inpt, mode=mode)
assert isinstance(output, PIL.Image.Image)
assert np.asarray(inpt).sum() == np.asarray(output).sum()
This diff is collapsed.
...@@ -4,7 +4,7 @@ import pytest ...@@ -4,7 +4,7 @@ import pytest
import torch import torch
import torchvision.transforms.v2._utils import torchvision.transforms.v2._utils
from common_utils import DEFAULT_SIZE, make_bounding_boxes, make_detection_mask, make_image from common_utils import DEFAULT_SIZE, make_bounding_boxes, make_detection_masks, make_image
from torchvision import tv_tensors from torchvision import tv_tensors
from torchvision.transforms.v2._utils import has_all, has_any from torchvision.transforms.v2._utils import has_all, has_any
...@@ -13,7 +13,7 @@ from torchvision.transforms.v2.functional import to_pil_image ...@@ -13,7 +13,7 @@ from torchvision.transforms.v2.functional import to_pil_image
IMAGE = make_image(DEFAULT_SIZE, color_space="RGB") IMAGE = make_image(DEFAULT_SIZE, color_space="RGB")
BOUNDING_BOX = make_bounding_boxes(DEFAULT_SIZE, format=tv_tensors.BoundingBoxFormat.XYXY) BOUNDING_BOX = make_bounding_boxes(DEFAULT_SIZE, format=tv_tensors.BoundingBoxFormat.XYXY)
MASK = make_detection_mask(DEFAULT_SIZE) MASK = make_detection_masks(DEFAULT_SIZE)
@pytest.mark.parametrize( @pytest.mark.parametrize(
......
...@@ -5,12 +5,8 @@ implemented there and must not use any of the utilities here. ...@@ -5,12 +5,8 @@ implemented there and must not use any of the utilities here.
The following legacy modules depend on this module The following legacy modules depend on this module
- test_transforms_v2_functional.py
- test_transforms_v2_consistency.py - test_transforms_v2_consistency.py
- test_transforms_v2.py - test_prototype_transforms.py
When all the logic is ported from the files above to test_transforms_v2_refactored.py, delete
all the legacy modules including this one and drop the _refactored prefix from the name.
""" """
import collections.abc import collections.abc
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment