Unverified Commit 5f0edb97 authored by Philip Meier's avatar Philip Meier Committed by GitHub
Browse files

Add ufmt (usort + black) as code formatter (#4384)



* add ufmt as code formatter

* cleanup

* quote ufmt requirement

* split imports into more groups

* regenerate circleci config

* fix CI

* clarify local testing utils section

* use ufmt pre-commit hook

* split relative imports into local category

* Revert "split relative imports into local category"

This reverts commit f2e224cde2008c56c9347c1f69746d39065cdd51.

* pin black and usort dependencies

* fix local test utils detection

* fix ufmt rev

* add reference utils to local category

* fix usort config

* remove custom categories sorting

* Run pre-commit without fixing flake8

* got a double import in merge
Co-authored-by: default avatarNicolas Hug <nicolashug@fb.com>
parent e45489b1
import bisect
from collections import defaultdict
import copy
from itertools import repeat, chain
import math
import numpy as np
from collections import defaultdict
from itertools import repeat, chain
import numpy as np
import torch
import torch.utils.data
from torch.utils.data.sampler import BatchSampler, Sampler
from torch.utils.model_zoo import tqdm
import torchvision
from PIL import Image
from torch.utils.data.sampler import BatchSampler, Sampler
from torch.utils.model_zoo import tqdm
def _repeat_to_at_least(iterable, n):
......@@ -34,11 +33,11 @@ class GroupedBatchSampler(BatchSampler):
0, i.e. they must be in the range [0, num_groups).
batch_size (int): Size of mini-batch.
"""
def __init__(self, sampler, group_ids, batch_size):
if not isinstance(sampler, Sampler):
raise ValueError(
"sampler should be an instance of "
"torch.utils.data.Sampler, but got sampler={}".format(sampler)
"sampler should be an instance of " "torch.utils.data.Sampler, but got sampler={}".format(sampler)
)
self.sampler = sampler
self.group_ids = group_ids
......@@ -68,8 +67,7 @@ class GroupedBatchSampler(BatchSampler):
if num_remaining > 0:
# for the remaining batches, take first the buffers with largest number
# of elements
for group_id, _ in sorted(buffer_per_group.items(),
key=lambda x: len(x[1]), reverse=True):
for group_id, _ in sorted(buffer_per_group.items(), key=lambda x: len(x[1]), reverse=True):
remaining = self.batch_size - len(buffer_per_group[group_id])
samples_from_group_id = _repeat_to_at_least(samples_per_group[group_id], remaining)
buffer_per_group[group_id].extend(samples_from_group_id[:remaining])
......@@ -85,10 +83,12 @@ class GroupedBatchSampler(BatchSampler):
def _compute_aspect_ratios_slow(dataset, indices=None):
print("Your dataset doesn't support the fast path for "
"computing the aspect ratios, so will iterate over "
"the full dataset and load every image instead. "
"This might take some time...")
print(
"Your dataset doesn't support the fast path for "
"computing the aspect ratios, so will iterate over "
"the full dataset and load every image instead. "
"This might take some time..."
)
if indices is None:
indices = range(len(dataset))
......@@ -104,9 +104,12 @@ def _compute_aspect_ratios_slow(dataset, indices=None):
sampler = SubsetSampler(indices)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, sampler=sampler,
dataset,
batch_size=1,
sampler=sampler,
num_workers=14, # you might want to increase it for faster processing
collate_fn=lambda x: x[0])
collate_fn=lambda x: x[0],
)
aspect_ratios = []
with tqdm(total=len(dataset)) as pbar:
for _i, (img, _) in enumerate(data_loader):
......
import torch
import transforms as T
class DetectionPresetTrain:
def __init__(self, data_augmentation, hflip_prob=0.5, mean=(123., 117., 104.)):
if data_augmentation == 'hflip':
self.transforms = T.Compose([
T.RandomHorizontalFlip(p=hflip_prob),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
])
elif data_augmentation == 'ssd':
self.transforms = T.Compose([
T.RandomPhotometricDistort(),
T.RandomZoomOut(fill=list(mean)),
T.RandomIoUCrop(),
T.RandomHorizontalFlip(p=hflip_prob),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
])
elif data_augmentation == 'ssdlite':
self.transforms = T.Compose([
T.RandomIoUCrop(),
T.RandomHorizontalFlip(p=hflip_prob),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
])
def __init__(self, data_augmentation, hflip_prob=0.5, mean=(123.0, 117.0, 104.0)):
if data_augmentation == "hflip":
self.transforms = T.Compose(
[
T.RandomHorizontalFlip(p=hflip_prob),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
]
)
elif data_augmentation == "ssd":
self.transforms = T.Compose(
[
T.RandomPhotometricDistort(),
T.RandomZoomOut(fill=list(mean)),
T.RandomIoUCrop(),
T.RandomHorizontalFlip(p=hflip_prob),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
]
)
elif data_augmentation == "ssdlite":
self.transforms = T.Compose(
[
T.RandomIoUCrop(),
T.RandomHorizontalFlip(p=hflip_prob),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
]
)
else:
raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"')
......
......@@ -21,26 +21,20 @@ import datetime
import os
import time
import presets
import torch
import torch.utils.data
import torchvision
import torchvision.models.detection
import torchvision.models.detection.mask_rcnn
import utils
from coco_utils import get_coco, get_coco_kp
from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
from engine import train_one_epoch, evaluate
import presets
import utils
from group_by_aspect_ratio import GroupedBatchSampler, create_aspect_ratio_groups
def get_dataset(name, image_set, transform, data_path):
paths = {
"coco": (data_path, get_coco, 91),
"coco_kp": (data_path, get_coco_kp, 2)
}
paths = {"coco": (data_path, get_coco, 91), "coco_kp": (data_path, get_coco_kp, 2)}
p, ds_fn, num_classes = paths[name]
ds = ds_fn(p, image_set=image_set, transforms=transform)
......@@ -53,42 +47,60 @@ def get_transform(train, data_augmentation):
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(description='PyTorch Detection Training', add_help=add_help)
parser.add_argument('--data-path', default='/datasets01/COCO/022719/', help='dataset')
parser.add_argument('--dataset', default='coco', help='dataset')
parser.add_argument('--model', default='maskrcnn_resnet50_fpn', help='model')
parser.add_argument('--device', default='cuda', help='device')
parser.add_argument('-b', '--batch-size', default=2, type=int,
help='images per gpu, the total batch size is $NGPU x batch_size')
parser.add_argument('--epochs', default=26, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--lr', default=0.02, type=float,
help='initial learning rate, 0.02 is the default value for training '
'on 8 gpus and 2 images_per_gpu')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--lr-scheduler', default="multisteplr", help='the lr scheduler (default: multisteplr)')
parser.add_argument('--lr-step-size', default=8, type=int,
help='decrease lr every step-size epochs (multisteplr scheduler only)')
parser.add_argument('--lr-steps', default=[16, 22], nargs='+', type=int,
help='decrease lr every step-size epochs (multisteplr scheduler only)')
parser.add_argument('--lr-gamma', default=0.1, type=float,
help='decrease lr by a factor of lr-gamma (multisteplr scheduler only)')
parser.add_argument('--print-freq', default=20, type=int, help='print frequency')
parser.add_argument('--output-dir', default='.', help='path where to save')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, help='start epoch')
parser.add_argument('--aspect-ratio-group-factor', default=3, type=int)
parser.add_argument('--rpn-score-thresh', default=None, type=float, help='rpn score threshold for faster-rcnn')
parser.add_argument('--trainable-backbone-layers', default=None, type=int,
help='number of trainable layers of backbone')
parser.add_argument('--data-augmentation', default="hflip", help='data augmentation policy (default: hflip)')
parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help)
parser.add_argument("--data-path", default="/datasets01/COCO/022719/", help="dataset")
parser.add_argument("--dataset", default="coco", help="dataset")
parser.add_argument("--model", default="maskrcnn_resnet50_fpn", help="model")
parser.add_argument("--device", default="cuda", help="device")
parser.add_argument(
"-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
)
parser.add_argument("--epochs", default=26, type=int, metavar="N", help="number of total epochs to run")
parser.add_argument(
"-j", "--workers", default=4, type=int, metavar="N", help="number of data loading workers (default: 4)"
)
parser.add_argument(
"--lr",
default=0.02,
type=float,
help="initial learning rate, 0.02 is the default value for training " "on 8 gpus and 2 images_per_gpu",
)
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument(
"--wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
parser.add_argument("--lr-scheduler", default="multisteplr", help="the lr scheduler (default: multisteplr)")
parser.add_argument(
"--lr-step-size", default=8, type=int, help="decrease lr every step-size epochs (multisteplr scheduler only)"
)
parser.add_argument(
"--lr-steps",
default=[16, 22],
nargs="+",
type=int,
help="decrease lr every step-size epochs (multisteplr scheduler only)",
)
parser.add_argument(
"--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma (multisteplr scheduler only)"
)
parser.add_argument("--print-freq", default=20, type=int, help="print frequency")
parser.add_argument("--output-dir", default=".", help="path where to save")
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument("--start_epoch", default=0, type=int, help="start epoch")
parser.add_argument("--aspect-ratio-group-factor", default=3, type=int)
parser.add_argument("--rpn-score-thresh", default=None, type=float, help="rpn score threshold for faster-rcnn")
parser.add_argument(
"--trainable-backbone-layers", default=None, type=int, help="number of trainable layers of backbone"
)
parser.add_argument("--data-augmentation", default="hflip", help="data augmentation policy (default: hflip)")
parser.add_argument(
"--sync-bn",
dest="sync_bn",
......@@ -109,9 +121,8 @@ def get_args_parser(add_help=True):
)
# distributed training parameters
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", help="url used to set up distributed training")
return parser
......@@ -128,8 +139,9 @@ def main(args):
# Data loading code
print("Loading data")
dataset, num_classes = get_dataset(args.dataset, "train", get_transform(True, args.data_augmentation),
args.data_path)
dataset, num_classes = get_dataset(
args.dataset, "train", get_transform(True, args.data_augmentation), args.data_path
)
dataset_test, _ = get_dataset(args.dataset, "val", get_transform(False, args.data_augmentation), args.data_path)
print("Creating data loaders")
......@@ -144,27 +156,24 @@ def main(args):
group_ids = create_aspect_ratio_groups(dataset, k=args.aspect_ratio_group_factor)
train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
else:
train_batch_sampler = torch.utils.data.BatchSampler(
train_sampler, args.batch_size, drop_last=True)
train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, args.batch_size, drop_last=True)
data_loader = torch.utils.data.DataLoader(
dataset, batch_sampler=train_batch_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn)
dataset, batch_sampler=train_batch_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1,
sampler=test_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn)
dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
)
print("Creating model")
kwargs = {
"trainable_backbone_layers": args.trainable_backbone_layers
}
kwargs = {"trainable_backbone_layers": args.trainable_backbone_layers}
if "rcnn" in args.model:
if args.rpn_score_thresh is not None:
kwargs["rpn_score_thresh"] = args.rpn_score_thresh
model = torchvision.models.detection.__dict__[args.model](num_classes=num_classes, pretrained=args.pretrained,
**kwargs)
model = torchvision.models.detection.__dict__[args.model](
num_classes=num_classes, pretrained=args.pretrained, **kwargs
)
model.to(device)
if args.distributed and args.sync_bn:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
......@@ -175,24 +184,25 @@ def main(args):
model_without_ddp = model.module
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(
params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
args.lr_scheduler = args.lr_scheduler.lower()
if args.lr_scheduler == 'multisteplr':
if args.lr_scheduler == "multisteplr":
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)
elif args.lr_scheduler == 'cosineannealinglr':
elif args.lr_scheduler == "cosineannealinglr":
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs)
else:
raise RuntimeError("Invalid lr scheduler '{}'. Only MultiStepLR and CosineAnnealingLR "
"are supported.".format(args.lr_scheduler))
raise RuntimeError(
"Invalid lr scheduler '{}'. Only MultiStepLR and CosineAnnealingLR "
"are supported.".format(args.lr_scheduler)
)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
checkpoint = torch.load(args.resume, map_location="cpu")
model_without_ddp.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
if args.test_only:
evaluate(model, data_loader_test, device=device)
......@@ -207,25 +217,21 @@ def main(args):
lr_scheduler.step()
if args.output_dir:
checkpoint = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'args': args,
'epoch': epoch
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"args": args,
"epoch": epoch,
}
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'checkpoint.pth'))
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "model_{}.pth".format(epoch)))
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
# evaluate after every epoch
evaluate(model, data_loader_test, device=device)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
print("Training time {}".format(total_time_str))
if __name__ == "__main__":
......
......@@ -28,8 +28,9 @@ class Compose(object):
class RandomHorizontalFlip(T.RandomHorizontalFlip):
def forward(self, image: Tensor,
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if torch.rand(1) < self.p:
image = F.hflip(image)
if target is not None:
......@@ -45,16 +46,18 @@ class RandomHorizontalFlip(T.RandomHorizontalFlip):
class ToTensor(nn.Module):
def forward(self, image: Tensor,
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
image = F.pil_to_tensor(image)
image = F.convert_image_dtype(image)
return image, target
class PILToTensor(nn.Module):
def forward(self, image: Tensor,
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
image = F.pil_to_tensor(image)
return image, target
......@@ -64,15 +67,23 @@ class ConvertImageDtype(nn.Module):
super().__init__()
self.dtype = dtype
def forward(self, image: Tensor,
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
image = F.convert_image_dtype(image, self.dtype)
return image, target
class RandomIoUCrop(nn.Module):
def __init__(self, min_scale: float = 0.3, max_scale: float = 1.0, min_aspect_ratio: float = 0.5,
max_aspect_ratio: float = 2.0, sampler_options: Optional[List[float]] = None, trials: int = 40):
def __init__(
self,
min_scale: float = 0.3,
max_scale: float = 1.0,
min_aspect_ratio: float = 0.5,
max_aspect_ratio: float = 2.0,
sampler_options: Optional[List[float]] = None,
trials: int = 40,
):
super().__init__()
# Configuration similar to https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_coco.py#L89-L174
self.min_scale = min_scale
......@@ -84,14 +95,15 @@ class RandomIoUCrop(nn.Module):
self.options = sampler_options
self.trials = trials
def forward(self, image: Tensor,
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if target is None:
raise ValueError("The targets can't be None for this transform.")
if isinstance(image, torch.Tensor):
if image.ndimension() not in {2, 3}:
raise ValueError('image should be 2/3 dimensional. Got {} dimensions.'.format(image.ndimension()))
raise ValueError("image should be 2/3 dimensional. Got {} dimensions.".format(image.ndimension()))
elif image.ndimension() == 2:
image = image.unsqueeze(0)
......@@ -131,8 +143,9 @@ class RandomIoUCrop(nn.Module):
# check at least 1 box with jaccard limitations
boxes = target["boxes"][is_within_crop_area]
ious = torchvision.ops.boxes.box_iou(boxes, torch.tensor([[left, top, right, bottom]],
dtype=boxes.dtype, device=boxes.device))
ious = torchvision.ops.boxes.box_iou(
boxes, torch.tensor([[left, top, right, bottom]], dtype=boxes.dtype, device=boxes.device)
)
if ious.max() < min_jaccard_overlap:
continue
......@@ -149,13 +162,15 @@ class RandomIoUCrop(nn.Module):
class RandomZoomOut(nn.Module):
def __init__(self, fill: Optional[List[float]] = None, side_range: Tuple[float, float] = (1., 4.), p: float = 0.5):
def __init__(
self, fill: Optional[List[float]] = None, side_range: Tuple[float, float] = (1.0, 4.0), p: float = 0.5
):
super().__init__()
if fill is None:
fill = [0., 0., 0.]
fill = [0.0, 0.0, 0.0]
self.fill = fill
self.side_range = side_range
if side_range[0] < 1. or side_range[0] > side_range[1]:
if side_range[0] < 1.0 or side_range[0] > side_range[1]:
raise ValueError("Invalid canvas side range provided {}.".format(side_range))
self.p = p
......@@ -165,11 +180,12 @@ class RandomZoomOut(nn.Module):
# We fake the type to make it work on JIT
return tuple(int(x) for x in self.fill) if is_pil else 0
def forward(self, image: Tensor,
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if isinstance(image, torch.Tensor):
if image.ndimension() not in {2, 3}:
raise ValueError('image should be 2/3 dimensional. Got {} dimensions.'.format(image.ndimension()))
raise ValueError("image should be 2/3 dimensional. Got {} dimensions.".format(image.ndimension()))
elif image.ndimension() == 2:
image = image.unsqueeze(0)
......@@ -196,8 +212,9 @@ class RandomZoomOut(nn.Module):
image = F.pad(image, [left, top, right, bottom], fill=fill)
if isinstance(image, torch.Tensor):
v = torch.tensor(self.fill, device=image.device, dtype=image.dtype).view(-1, 1, 1)
image[..., :top, :] = image[..., :, :left] = image[..., (top + orig_h):, :] = \
image[..., :, (left + orig_w):] = v
image[..., :top, :] = image[..., :, :left] = image[..., (top + orig_h) :, :] = image[
..., :, (left + orig_w) :
] = v
if target is not None:
target["boxes"][:, 0::2] += left
......@@ -207,8 +224,14 @@ class RandomZoomOut(nn.Module):
class RandomPhotometricDistort(nn.Module):
def __init__(self, contrast: Tuple[float] = (0.5, 1.5), saturation: Tuple[float] = (0.5, 1.5),
hue: Tuple[float] = (-0.05, 0.05), brightness: Tuple[float] = (0.875, 1.125), p: float = 0.5):
def __init__(
self,
contrast: Tuple[float] = (0.5, 1.5),
saturation: Tuple[float] = (0.5, 1.5),
hue: Tuple[float] = (-0.05, 0.05),
brightness: Tuple[float] = (0.875, 1.125),
p: float = 0.5,
):
super().__init__()
self._brightness = T.ColorJitter(brightness=brightness)
self._contrast = T.ColorJitter(contrast=contrast)
......@@ -216,11 +239,12 @@ class RandomPhotometricDistort(nn.Module):
self._saturation = T.ColorJitter(saturation=saturation)
self.p = p
def forward(self, image: Tensor,
target: Optional[Dict[str, Tensor]] = None) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
def forward(
self, image: Tensor, target: Optional[Dict[str, Tensor]] = None
) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]:
if isinstance(image, torch.Tensor):
if image.ndimension() not in {2, 3}:
raise ValueError('image should be 2/3 dimensional. Got {} dimensions.'.format(image.ndimension()))
raise ValueError("image should be 2/3 dimensional. Got {} dimensions.".format(image.ndimension()))
elif image.ndimension() == 2:
image = image.unsqueeze(0)
......
from collections import defaultdict, deque
import datetime
import errno
import os
import time
from collections import defaultdict, deque
import torch
import torch.distributed as dist
......@@ -32,7 +32,7 @@ class SmoothedValue(object):
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
......@@ -63,11 +63,8 @@ class SmoothedValue(object):
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
def all_gather(data):
......@@ -130,15 +127,12 @@ class MetricLogger(object):
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
......@@ -151,31 +145,28 @@ class MetricLogger(object):
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
log_msg = self.delimiter.join(
[header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
......@@ -185,22 +176,28 @@ class MetricLogger(object):
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
print(
log_msg.format(
i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {} ({:.4f} s / it)'.format(
header, total_time_str, total_time / len(iterable)))
print("{} Total time: {} ({:.4f} s / it)".format(header, total_time_str, total_time / len(iterable)))
def collate_fn(batch):
......@@ -220,10 +217,11 @@ def setup_for_distributed(is_master):
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
......@@ -260,25 +258,25 @@ def save_on_master(*args, **kwargs):
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
else:
print('Not using distributed mode')
print("Not using distributed mode")
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
args.dist_backend = "nccl"
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
)
torch.distributed.barrier()
setup_for_distributed(args.rank == 0)
import copy
import os
import torch
import torch.utils.data
import torchvision
from PIL import Image
import os
from pycocotools import mask as coco_mask
from transforms import Compose
......@@ -90,14 +88,9 @@ def get_coco(root, image_set, transforms):
"val": ("val2017", os.path.join("annotations", "instances_val2017.json")),
# "train": ("val2017", os.path.join("annotations", "instances_val2017.json"))
}
CAT_LIST = [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4,
1, 64, 20, 63, 7, 72]
transforms = Compose([
FilterAndRemapCocoCategories(CAT_LIST, remap=True),
ConvertCocoPolysToMask(),
transforms
])
CAT_LIST = [0, 5, 2, 16, 9, 44, 6, 3, 17, 62, 21, 67, 18, 19, 4, 1, 64, 20, 63, 7, 72]
transforms = Compose([FilterAndRemapCocoCategories(CAT_LIST, remap=True), ConvertCocoPolysToMask(), transforms])
img_folder, ann_file = PATHS[image_set]
img_folder = os.path.join(root, img_folder)
......
import torch
import transforms as T
......@@ -11,12 +10,14 @@ class SegmentationPresetTrain:
trans = [T.RandomResize(min_size, max_size)]
if hflip_prob > 0:
trans.append(T.RandomHorizontalFlip(hflip_prob))
trans.extend([
T.RandomCrop(crop_size),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
T.Normalize(mean=mean, std=std),
])
trans.extend(
[
T.RandomCrop(crop_size),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
T.Normalize(mean=mean, std=std),
]
)
self.transforms = T.Compose(trans)
def __call__(self, img, target):
......@@ -25,12 +26,14 @@ class SegmentationPresetTrain:
class SegmentationPresetEval:
def __init__(self, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)):
self.transforms = T.Compose([
T.RandomResize(base_size, base_size),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
T.Normalize(mean=mean, std=std),
])
self.transforms = T.Compose(
[
T.RandomResize(base_size, base_size),
T.PILToTensor(),
T.ConvertImageDtype(torch.float),
T.Normalize(mean=mean, std=std),
]
)
def __call__(self, img, target):
return self.transforms(img, target)
......@@ -2,23 +2,23 @@ import datetime
import os
import time
import presets
import torch
import torch.utils.data
from torch import nn
import torchvision
from coco_utils import get_coco
import presets
import utils
from coco_utils import get_coco
from torch import nn
def get_dataset(dir_path, name, image_set, transform):
def sbd(*args, **kwargs):
return torchvision.datasets.SBDataset(*args, mode='segmentation', **kwargs)
return torchvision.datasets.SBDataset(*args, mode="segmentation", **kwargs)
paths = {
"voc": (dir_path, torchvision.datasets.VOCSegmentation, 21),
"voc_aug": (dir_path, sbd, 21),
"coco": (dir_path, get_coco, 21)
"coco": (dir_path, get_coco, 21),
}
p, ds_fn, num_classes = paths[name]
......@@ -39,21 +39,21 @@ def criterion(inputs, target):
losses[name] = nn.functional.cross_entropy(x, target, ignore_index=255)
if len(losses) == 1:
return losses['out']
return losses["out"]
return losses['out'] + 0.5 * losses['aux']
return losses["out"] + 0.5 * losses["aux"]
def evaluate(model, data_loader, device, num_classes):
model.eval()
confmat = utils.ConfusionMatrix(num_classes)
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
header = "Test:"
with torch.no_grad():
for image, target in metric_logger.log_every(data_loader, 100, header):
image, target = image.to(device), target.to(device)
output = model(image)
output = output['out']
output = output["out"]
confmat.update(target.flatten(), output.argmax(1).flatten())
......@@ -65,8 +65,8 @@ def evaluate(model, data_loader, device, num_classes):
def train_one_epoch(model, criterion, optimizer, data_loader, lr_scheduler, device, epoch, print_freq):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
header = 'Epoch: [{}]'.format(epoch)
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
header = "Epoch: [{}]".format(epoch)
for image, target in metric_logger.log_every(data_loader, print_freq, header):
image, target = image.to(device), target.to(device)
output = model(image)
......@@ -101,18 +101,21 @@ def main(args):
test_sampler = torch.utils.data.SequentialSampler(dataset_test)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn, drop_last=True)
dataset,
batch_size=args.batch_size,
sampler=train_sampler,
num_workers=args.workers,
collate_fn=utils.collate_fn,
drop_last=True,
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=1,
sampler=test_sampler, num_workers=args.workers,
collate_fn=utils.collate_fn)
dataset_test, batch_size=1, sampler=test_sampler, num_workers=args.workers, collate_fn=utils.collate_fn
)
model = torchvision.models.segmentation.__dict__[args.model](num_classes=num_classes,
aux_loss=args.aux_loss,
pretrained=args.pretrained)
model = torchvision.models.segmentation.__dict__[args.model](
num_classes=num_classes, aux_loss=args.aux_loss, pretrained=args.pretrained
)
model.to(device)
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
......@@ -129,42 +132,42 @@ def main(args):
if args.aux_loss:
params = [p for p in model_without_ddp.aux_classifier.parameters() if p.requires_grad]
params_to_optimize.append({"params": params, "lr": args.lr * 10})
optimizer = torch.optim.SGD(
params_to_optimize,
lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer = torch.optim.SGD(params_to_optimize, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
iters_per_epoch = len(data_loader)
main_lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
optimizer,
lambda x: (1 - x / (iters_per_epoch * (args.epochs - args.lr_warmup_epochs))) ** 0.9)
optimizer, lambda x: (1 - x / (iters_per_epoch * (args.epochs - args.lr_warmup_epochs))) ** 0.9
)
if args.lr_warmup_epochs > 0:
warmup_iters = iters_per_epoch * args.lr_warmup_epochs
args.lr_warmup_method = args.lr_warmup_method.lower()
if args.lr_warmup_method == 'linear':
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=args.lr_warmup_decay,
total_iters=warmup_iters)
elif args.lr_warmup_method == 'constant':
warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer, factor=args.lr_warmup_decay,
total_iters=warmup_iters)
if args.lr_warmup_method == "linear":
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=args.lr_warmup_decay, total_iters=warmup_iters
)
elif args.lr_warmup_method == "constant":
warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer, factor=args.lr_warmup_decay, total_iters=warmup_iters
)
else:
raise RuntimeError("Invalid warmup lr method '{}'. Only linear and constant "
"are supported.".format(args.lr_warmup_method))
raise RuntimeError(
"Invalid warmup lr method '{}'. Only linear and constant "
"are supported.".format(args.lr_warmup_method)
)
lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer,
schedulers=[warmup_lr_scheduler, main_lr_scheduler],
milestones=[warmup_iters]
optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[warmup_iters]
)
else:
lr_scheduler = main_lr_scheduler
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'], strict=not args.test_only)
checkpoint = torch.load(args.resume, map_location="cpu")
model_without_ddp.load_state_dict(checkpoint["model"], strict=not args.test_only)
if not args.test_only:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
if args.test_only:
confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
......@@ -179,53 +182,54 @@ def main(args):
confmat = evaluate(model, data_loader_test, device=device, num_classes=num_classes)
print(confmat)
checkpoint = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"args": args,
}
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'checkpoint.pth'))
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "model_{}.pth".format(epoch)))
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
print("Training time {}".format(total_time_str))
def get_args_parser(add_help=True):
import argparse
parser = argparse.ArgumentParser(description='PyTorch Segmentation Training', add_help=add_help)
parser.add_argument('--data-path', default='/datasets01/COCO/022719/', help='dataset path')
parser.add_argument('--dataset', default='coco', help='dataset name')
parser.add_argument('--model', default='fcn_resnet101', help='model')
parser.add_argument('--aux-loss', action='store_true', help='auxiliar loss')
parser.add_argument('--device', default='cuda', help='device')
parser.add_argument('-b', '--batch-size', default=8, type=int)
parser.add_argument('--epochs', default=30, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 16)')
parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--lr-warmup-epochs', default=0, type=int, help='the number of epochs to warmup (default: 0)')
parser.add_argument('--lr-warmup-method', default="linear", type=str, help='the warmup method (default: linear)')
parser.add_argument('--lr-warmup-decay', default=0.01, type=float, help='the decay for lr')
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
parser.add_argument('--output-dir', default='.', help='path where to save')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='start epoch')
parser = argparse.ArgumentParser(description="PyTorch Segmentation Training", add_help=add_help)
parser.add_argument("--data-path", default="/datasets01/COCO/022719/", help="dataset path")
parser.add_argument("--dataset", default="coco", help="dataset name")
parser.add_argument("--model", default="fcn_resnet101", help="model")
parser.add_argument("--aux-loss", action="store_true", help="auxiliar loss")
parser.add_argument("--device", default="cuda", help="device")
parser.add_argument("-b", "--batch-size", default=8, type=int)
parser.add_argument("--epochs", default=30, type=int, metavar="N", help="number of total epochs to run")
parser.add_argument(
"-j", "--workers", default=16, type=int, metavar="N", help="number of data loading workers (default: 16)"
)
parser.add_argument("--lr", default=0.01, type=float, help="initial learning rate")
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument(
"--wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
parser.add_argument("--lr-warmup-epochs", default=0, type=int, help="the number of epochs to warmup (default: 0)")
parser.add_argument("--lr-warmup-method", default="linear", type=str, help="the warmup method (default: linear)")
parser.add_argument("--lr-warmup-decay", default=0.01, type=float, help="the decay for lr")
parser.add_argument("--print-freq", default=10, type=int, help="print frequency")
parser.add_argument("--output-dir", default=".", help="path where to save")
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
parser.add_argument(
"--test-only",
dest="test_only",
......@@ -239,9 +243,8 @@ def get_args_parser(add_help=True):
action="store_true",
)
# distributed training parameters
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", help="url used to set up distributed training")
return parser
......
from collections import defaultdict, deque
import datetime
import errno
import os
import time
from collections import defaultdict, deque
import torch
import torch.distributed as dist
import errno
import os
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
......@@ -32,7 +32,7 @@ class SmoothedValue(object):
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
......@@ -63,11 +63,8 @@ class SmoothedValue(object):
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
class ConfusionMatrix(object):
......@@ -82,7 +79,7 @@ class ConfusionMatrix(object):
with torch.no_grad():
k = (a >= 0) & (a < n)
inds = n * a[k].to(torch.int64) + b[k]
self.mat += torch.bincount(inds, minlength=n**2).reshape(n, n)
self.mat += torch.bincount(inds, minlength=n ** 2).reshape(n, n)
def reset(self):
self.mat.zero_()
......@@ -104,15 +101,12 @@ class ConfusionMatrix(object):
def __str__(self):
acc_global, acc, iu = self.compute()
return (
'global correct: {:.1f}\n'
'average row correct: {}\n'
'IoU: {}\n'
'mean IoU: {:.1f}').format(
acc_global.item() * 100,
['{:.1f}'.format(i) for i in (acc * 100).tolist()],
['{:.1f}'.format(i) for i in (iu * 100).tolist()],
iu.mean().item() * 100)
return ("global correct: {:.1f}\n" "average row correct: {}\n" "IoU: {}\n" "mean IoU: {:.1f}").format(
acc_global.item() * 100,
["{:.1f}".format(i) for i in (acc * 100).tolist()],
["{:.1f}".format(i) for i in (iu * 100).tolist()],
iu.mean().item() * 100,
)
class MetricLogger(object):
......@@ -132,15 +126,12 @@ class MetricLogger(object):
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
......@@ -153,31 +144,28 @@ class MetricLogger(object):
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
log_msg = self.delimiter.join(
[header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
......@@ -187,21 +175,28 @@ class MetricLogger(object):
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
print(
log_msg.format(
i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {}'.format(header, total_time_str))
print("{} Total time: {}".format(header, total_time_str))
def cat_list(images, fill_value=0):
......@@ -209,7 +204,7 @@ def cat_list(images, fill_value=0):
batch_shape = (len(images),) + max_size
batched_imgs = images[0].new(*batch_shape).fill_(fill_value)
for img, pad_img in zip(images, batched_imgs):
pad_img[..., :img.shape[-2], :img.shape[-1]].copy_(img)
pad_img[..., : img.shape[-2], : img.shape[-1]].copy_(img)
return batched_imgs
......@@ -233,10 +228,11 @@ def setup_for_distributed(is_master):
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
......@@ -273,26 +269,26 @@ def save_on_master(*args, **kwargs):
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
elif hasattr(args, "rank"):
pass
else:
print('Not using distributed mode')
print("Not using distributed mode")
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
args.dist_backend = "nccl"
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
)
setup_for_distributed(args.rank == 0)
'''
"""
Pytorch adaptation of https://omoindrot.github.io/triplet-loss
https://github.com/omoindrot/tensorflow-triplet-loss
'''
"""
import torch
import torch.nn as nn
class TripletMarginLoss(nn.Module):
def __init__(self, margin=1.0, p=2., mining='batch_all'):
def __init__(self, margin=1.0, p=2.0, mining="batch_all"):
super(TripletMarginLoss, self).__init__()
self.margin = margin
self.p = p
self.mining = mining
if mining == 'batch_all':
if mining == "batch_all":
self.loss_fn = batch_all_triplet_loss
if mining == 'batch_hard':
if mining == "batch_hard":
self.loss_fn = batch_hard_triplet_loss
def forward(self, embeddings, labels):
......
import random
from collections import defaultdict
import torch
from torch.utils.data.sampler import Sampler
from collections import defaultdict
import random
def create_groups(groups, k):
......
import unittest
from collections import defaultdict
from torch.utils.data import DataLoader
from torchvision.datasets import FakeData
import torchvision.transforms as transforms
from sampler import PKSampler
from torch.utils.data import DataLoader
from torchvision.datasets import FakeData
class Tester(unittest.TestCase):
def test_pksampler(self):
p, k = 16, 4
......@@ -19,8 +17,7 @@ class Tester(unittest.TestCase):
self.assertRaises(AssertionError, PKSampler, targets, p, k)
# Ensure p, k constraints on batch
dataset = FakeData(size=1000, num_classes=100, image_size=(3, 1, 1),
transform=transforms.ToTensor())
dataset = FakeData(size=1000, num_classes=100, image_size=(3, 1, 1), transform=transforms.ToTensor())
targets = [target.item() for _, target in dataset]
sampler = PKSampler(targets, p, k)
loader = DataLoader(dataset, batch_size=p * k, sampler=sampler)
......@@ -38,5 +35,5 @@ class Tester(unittest.TestCase):
self.assertEqual(bins[b], k)
if __name__ == '__main__':
if __name__ == "__main__":
unittest.main()
import os
import torch
from torch.optim import Adam
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
from torchvision.datasets import FashionMNIST
from loss import TripletMarginLoss
from sampler import PKSampler
from model import EmbeddingNet
from sampler import PKSampler
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.datasets import FashionMNIST
def train_epoch(model, optimizer, criterion, data_loader, device, epoch, print_freq):
......@@ -33,7 +31,7 @@ def train_epoch(model, optimizer, criterion, data_loader, device, epoch, print_f
i += 1
avg_loss = running_loss / print_freq
avg_trip = 100.0 * running_frac_pos_triplets / print_freq
print('[{:d}, {:d}] | loss: {:.4f} | % avg hard triplets: {:.2f}%'.format(epoch, i, avg_loss, avg_trip))
print("[{:d}, {:d}] | loss: {:.4f} | % avg hard triplets: {:.2f}%".format(epoch, i, avg_loss, avg_trip))
running_loss = 0
running_frac_pos_triplets = 0
......@@ -79,17 +77,17 @@ def evaluate(model, loader, device):
threshold, accuracy = find_best_threshold(dists, targets, device)
print('accuracy: {:.3f}%, threshold: {:.2f}'.format(accuracy, threshold))
print("accuracy: {:.3f}%, threshold: {:.2f}".format(accuracy, threshold))
def save(model, epoch, save_dir, file_name):
file_name = 'epoch_' + str(epoch) + '__' + file_name
file_name = "epoch_" + str(epoch) + "__" + file_name
save_path = os.path.join(save_dir, file_name)
torch.save(model.state_dict(), save_path)
def main(args):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
p = args.labels_per_batch
k = args.samples_per_label
batch_size = p * k
......@@ -103,9 +101,9 @@ def main(args):
criterion = TripletMarginLoss(margin=args.margin)
optimizer = Adam(model.parameters(), lr=args.lr)
transform = transforms.Compose([transforms.Lambda(lambda image: image.convert('RGB')),
transforms.Resize((224, 224)),
transforms.ToTensor()])
transform = transforms.Compose(
[transforms.Lambda(lambda image: image.convert("RGB")), transforms.Resize((224, 224)), transforms.ToTensor()]
)
# Using FMNIST to demonstrate embedding learning using triplet loss. This dataset can
# be replaced with any classification dataset.
......@@ -118,48 +116,44 @@ def main(args):
# targets attribute with the same format.
targets = train_dataset.targets.tolist()
train_loader = DataLoader(train_dataset, batch_size=batch_size,
sampler=PKSampler(targets, p, k),
num_workers=args.workers)
test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size,
shuffle=False,
num_workers=args.workers)
train_loader = DataLoader(
train_dataset, batch_size=batch_size, sampler=PKSampler(targets, p, k), num_workers=args.workers
)
test_loader = DataLoader(test_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.workers)
for epoch in range(1, args.epochs + 1):
print('Training...')
print("Training...")
train_epoch(model, optimizer, criterion, train_loader, device, epoch, args.print_freq)
print('Evaluating...')
print("Evaluating...")
evaluate(model, test_loader, device)
print('Saving...')
save(model, epoch, args.save_dir, 'ckpt.pth')
print("Saving...")
save(model, epoch, args.save_dir, "ckpt.pth")
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='PyTorch Embedding Learning')
parser.add_argument('--dataset-dir', default='/tmp/fmnist/',
help='FashionMNIST dataset directory path')
parser.add_argument('-p', '--labels-per-batch', default=8, type=int,
help='Number of unique labels/classes per batch')
parser.add_argument('-k', '--samples-per-label', default=8, type=int,
help='Number of samples per label in a batch')
parser.add_argument('--eval-batch-size', default=512, type=int)
parser.add_argument('--epochs', default=10, type=int, metavar='N',
help='Number of training epochs to run')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='Number of data loading workers')
parser.add_argument('--lr', default=0.0001, type=float, help='Learning rate')
parser.add_argument('--margin', default=0.2, type=float, help='Triplet loss margin')
parser.add_argument('--print-freq', default=20, type=int, help='Print frequency')
parser.add_argument('--save-dir', default='.', help='Model save directory')
parser.add_argument('--resume', default='', help='Resume from checkpoint')
parser = argparse.ArgumentParser(description="PyTorch Embedding Learning")
parser.add_argument("--dataset-dir", default="/tmp/fmnist/", help="FashionMNIST dataset directory path")
parser.add_argument(
"-p", "--labels-per-batch", default=8, type=int, help="Number of unique labels/classes per batch"
)
parser.add_argument("-k", "--samples-per-label", default=8, type=int, help="Number of samples per label in a batch")
parser.add_argument("--eval-batch-size", default=512, type=int)
parser.add_argument("--epochs", default=10, type=int, metavar="N", help="Number of training epochs to run")
parser.add_argument("-j", "--workers", default=4, type=int, metavar="N", help="Number of data loading workers")
parser.add_argument("--lr", default=0.0001, type=float, help="Learning rate")
parser.add_argument("--margin", default=0.2, type=float, help="Triplet loss margin")
parser.add_argument("--print-freq", default=20, type=int, help="Print frequency")
parser.add_argument("--save-dir", default=".", help="Model save directory")
parser.add_argument("--resume", default="", help="Resume from checkpoint")
return parser.parse_args()
if __name__ == '__main__':
if __name__ == "__main__":
args = parse_args()
main(args)
import torch
from torchvision.transforms import transforms
from transforms import ConvertBHWCtoBCHW, ConvertBCHWtoCBHW
class VideoClassificationPresetTrain:
def __init__(self, resize_size, crop_size, mean=(0.43216, 0.394666, 0.37645), std=(0.22803, 0.22145, 0.216989),
hflip_prob=0.5):
def __init__(
self,
resize_size,
crop_size,
mean=(0.43216, 0.394666, 0.37645),
std=(0.22803, 0.22145, 0.216989),
hflip_prob=0.5,
):
trans = [
ConvertBHWCtoBCHW(),
transforms.ConvertImageDtype(torch.float32),
......@@ -14,11 +19,7 @@ class VideoClassificationPresetTrain:
]
if hflip_prob > 0:
trans.append(transforms.RandomHorizontalFlip(hflip_prob))
trans.extend([
transforms.Normalize(mean=mean, std=std),
transforms.RandomCrop(crop_size),
ConvertBCHWtoCBHW()
])
trans.extend([transforms.Normalize(mean=mean, std=std), transforms.RandomCrop(crop_size), ConvertBCHWtoCBHW()])
self.transforms = transforms.Compose(trans)
def __call__(self, x):
......@@ -27,14 +28,16 @@ class VideoClassificationPresetTrain:
class VideoClassificationPresetEval:
def __init__(self, resize_size, crop_size, mean=(0.43216, 0.394666, 0.37645), std=(0.22803, 0.22145, 0.216989)):
self.transforms = transforms.Compose([
ConvertBHWCtoBCHW(),
transforms.ConvertImageDtype(torch.float32),
transforms.Resize(resize_size),
transforms.Normalize(mean=mean, std=std),
transforms.CenterCrop(crop_size),
ConvertBCHWtoCBHW()
])
self.transforms = transforms.Compose(
[
ConvertBHWCtoBCHW(),
transforms.ConvertImageDtype(torch.float32),
transforms.Resize(resize_size),
transforms.Normalize(mean=mean, std=std),
transforms.CenterCrop(crop_size),
ConvertBCHWtoCBHW(),
]
)
def __call__(self, x):
return self.transforms(x)
import datetime
import os
import time
import presets
import torch
import torch.utils.data
from torch.utils.data.dataloader import default_collate
from torch import nn
import torchvision
import torchvision.datasets.video_utils
from torchvision.datasets.samplers import DistributedSampler, UniformClipSampler, RandomClipSampler
import presets
import utils
from torch import nn
from torch.utils.data.dataloader import default_collate
from torchvision.datasets.samplers import DistributedSampler, UniformClipSampler, RandomClipSampler
try:
from apex import amp
......@@ -21,10 +21,10 @@ except ImportError:
def train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, print_freq, apex=False):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value}'))
metric_logger.add_meter('clips/s', utils.SmoothedValue(window_size=10, fmt='{value:.3f}'))
metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value}"))
metric_logger.add_meter("clips/s", utils.SmoothedValue(window_size=10, fmt="{value:.3f}"))
header = 'Epoch: [{}]'.format(epoch)
header = "Epoch: [{}]".format(epoch)
for video, target in metric_logger.log_every(data_loader, print_freq, header):
start_time = time.time()
video, target = video.to(device), target.to(device)
......@@ -42,16 +42,16 @@ def train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader, devi
acc1, acc5 = utils.accuracy(output, target, topk=(1, 5))
batch_size = video.shape[0]
metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
metric_logger.meters['clips/s'].update(batch_size / (time.time() - start_time))
metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
metric_logger.meters["clips/s"].update(batch_size / (time.time() - start_time))
lr_scheduler.step()
def evaluate(model, criterion, data_loader, device):
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
header = "Test:"
with torch.no_grad():
for video, target in metric_logger.log_every(data_loader, 100, header):
video = video.to(device, non_blocking=True)
......@@ -64,18 +64,22 @@ def evaluate(model, criterion, data_loader, device):
# could have been padded in distributed setup
batch_size = video.shape[0]
metric_logger.update(loss=loss.item())
metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
metric_logger.meters["acc1"].update(acc1.item(), n=batch_size)
metric_logger.meters["acc5"].update(acc5.item(), n=batch_size)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print(' * Clip Acc@1 {top1.global_avg:.3f} Clip Acc@5 {top5.global_avg:.3f}'
.format(top1=metric_logger.acc1, top5=metric_logger.acc5))
print(
" * Clip Acc@1 {top1.global_avg:.3f} Clip Acc@5 {top5.global_avg:.3f}".format(
top1=metric_logger.acc1, top5=metric_logger.acc5
)
)
return metric_logger.acc1.global_avg
def _get_cache_path(filepath):
import hashlib
h = hashlib.sha1(filepath.encode()).hexdigest()
cache_path = os.path.join("~", ".torch", "vision", "datasets", "kinetics", h[:10] + ".pt")
cache_path = os.path.expanduser(cache_path)
......@@ -90,8 +94,10 @@ def collate_fn(batch):
def main(args):
if args.apex and amp is None:
raise RuntimeError("Failed to import apex. Please install apex from https://www.github.com/nvidia/apex "
"to enable mixed-precision training.")
raise RuntimeError(
"Failed to import apex. Please install apex from https://www.github.com/nvidia/apex "
"to enable mixed-precision training."
)
if args.output_dir:
utils.mkdir(args.output_dir)
......@@ -121,15 +127,17 @@ def main(args):
dataset.transform = transform_train
else:
if args.distributed:
print("It is recommended to pre-compute the dataset cache "
"on a single-gpu first, as it will be faster")
print("It is recommended to pre-compute the dataset cache " "on a single-gpu first, as it will be faster")
dataset = torchvision.datasets.Kinetics400(
traindir,
frames_per_clip=args.clip_len,
step_between_clips=1,
transform=transform_train,
frame_rate=15,
extensions=('avi', 'mp4', )
extensions=(
"avi",
"mp4",
),
)
if args.cache_dataset:
print("Saving dataset_train to {}".format(cache_path))
......@@ -149,15 +157,17 @@ def main(args):
dataset_test.transform = transform_test
else:
if args.distributed:
print("It is recommended to pre-compute the dataset cache "
"on a single-gpu first, as it will be faster")
print("It is recommended to pre-compute the dataset cache " "on a single-gpu first, as it will be faster")
dataset_test = torchvision.datasets.Kinetics400(
valdir,
frames_per_clip=args.clip_len,
step_between_clips=1,
transform=transform_test,
frame_rate=15,
extensions=('avi', 'mp4',)
extensions=(
"avi",
"mp4",
),
)
if args.cache_dataset:
print("Saving dataset_test to {}".format(cache_path))
......@@ -172,14 +182,22 @@ def main(args):
test_sampler = DistributedSampler(test_sampler)
data_loader = torch.utils.data.DataLoader(
dataset, batch_size=args.batch_size,
sampler=train_sampler, num_workers=args.workers,
pin_memory=True, collate_fn=collate_fn)
dataset,
batch_size=args.batch_size,
sampler=train_sampler,
num_workers=args.workers,
pin_memory=True,
collate_fn=collate_fn,
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=args.batch_size,
sampler=test_sampler, num_workers=args.workers,
pin_memory=True, collate_fn=collate_fn)
dataset_test,
batch_size=args.batch_size,
sampler=test_sampler,
num_workers=args.workers,
pin_memory=True,
collate_fn=collate_fn,
)
print("Creating model")
model = torchvision.models.video.__dict__[args.model](pretrained=args.pretrained)
......@@ -190,13 +208,10 @@ def main(args):
criterion = nn.CrossEntropyLoss()
lr = args.lr * args.world_size
optimizer = torch.optim.SGD(
model.parameters(), lr=lr, momentum=args.momentum, weight_decay=args.weight_decay)
optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=args.momentum, weight_decay=args.weight_decay)
if args.apex:
model, optimizer = amp.initialize(model, optimizer,
opt_level=args.apex_opt_level
)
model, optimizer = amp.initialize(model, optimizer, opt_level=args.apex_opt_level)
# convert scheduler to be per iteration, not per epoch, for warmup that lasts
# between different epochs
......@@ -207,20 +222,22 @@ def main(args):
if args.lr_warmup_epochs > 0:
warmup_iters = iters_per_epoch * args.lr_warmup_epochs
args.lr_warmup_method = args.lr_warmup_method.lower()
if args.lr_warmup_method == 'linear':
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(optimizer, start_factor=args.lr_warmup_decay,
total_iters=warmup_iters)
elif args.lr_warmup_method == 'constant':
warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer, factor=args.lr_warmup_decay,
total_iters=warmup_iters)
if args.lr_warmup_method == "linear":
warmup_lr_scheduler = torch.optim.lr_scheduler.LinearLR(
optimizer, start_factor=args.lr_warmup_decay, total_iters=warmup_iters
)
elif args.lr_warmup_method == "constant":
warmup_lr_scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer, factor=args.lr_warmup_decay, total_iters=warmup_iters
)
else:
raise RuntimeError("Invalid warmup lr method '{}'. Only linear and constant "
"are supported.".format(args.lr_warmup_method))
raise RuntimeError(
"Invalid warmup lr method '{}'. Only linear and constant "
"are supported.".format(args.lr_warmup_method)
)
lr_scheduler = torch.optim.lr_scheduler.SequentialLR(
optimizer,
schedulers=[warmup_lr_scheduler, main_lr_scheduler],
milestones=[warmup_iters]
optimizer, schedulers=[warmup_lr_scheduler, main_lr_scheduler], milestones=[warmup_iters]
)
else:
lr_scheduler = main_lr_scheduler
......@@ -231,11 +248,11 @@ def main(args):
model_without_ddp = model.module
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
checkpoint = torch.load(args.resume, map_location="cpu")
model_without_ddp.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
args.start_epoch = checkpoint["epoch"] + 1
if args.test_only:
evaluate(model, criterion, data_loader_test, device=device)
......@@ -246,62 +263,65 @@ def main(args):
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
train_one_epoch(model, criterion, optimizer, lr_scheduler, data_loader,
device, epoch, args.print_freq, args.apex)
train_one_epoch(
model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, args.print_freq, args.apex
)
evaluate(model, criterion, data_loader_test, device=device)
if args.output_dir:
checkpoint = {
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args}
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))
utils.save_on_master(
checkpoint,
os.path.join(args.output_dir, 'checkpoint.pth'))
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch,
"args": args,
}
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "model_{}.pth".format(epoch)))
utils.save_on_master(checkpoint, os.path.join(args.output_dir, "checkpoint.pth"))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
print("Training time {}".format(total_time_str))
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='PyTorch Video Classification Training')
parser.add_argument('--data-path', default='/datasets01_101/kinetics/070618/', help='dataset')
parser.add_argument('--train-dir', default='train_avi-480p', help='name of train dir')
parser.add_argument('--val-dir', default='val_avi-480p', help='name of val dir')
parser.add_argument('--model', default='r2plus1d_18', help='model')
parser.add_argument('--device', default='cuda', help='device')
parser.add_argument('--clip-len', default=16, type=int, metavar='N',
help='number of frames per clip')
parser.add_argument('--clips-per-video', default=5, type=int, metavar='N',
help='maximum number of clips per video to consider')
parser.add_argument('-b', '--batch-size', default=24, type=int)
parser.add_argument('--epochs', default=45, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers (default: 10)')
parser.add_argument('--lr', default=0.01, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('--lr-milestones', nargs='+', default=[20, 30, 40], type=int, help='decrease lr on milestones')
parser.add_argument('--lr-gamma', default=0.1, type=float, help='decrease lr by a factor of lr-gamma')
parser.add_argument('--lr-warmup-epochs', default=10, type=int, help='the number of epochs to warmup (default: 10)')
parser.add_argument('--lr-warmup-method', default="linear", type=str, help='the warmup method (default: linear)')
parser.add_argument('--lr-warmup-decay', default=0.001, type=float, help='the decay for lr')
parser.add_argument('--print-freq', default=10, type=int, help='print frequency')
parser.add_argument('--output-dir', default='.', help='path where to save')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='start epoch')
parser = argparse.ArgumentParser(description="PyTorch Video Classification Training")
parser.add_argument("--data-path", default="/datasets01_101/kinetics/070618/", help="dataset")
parser.add_argument("--train-dir", default="train_avi-480p", help="name of train dir")
parser.add_argument("--val-dir", default="val_avi-480p", help="name of val dir")
parser.add_argument("--model", default="r2plus1d_18", help="model")
parser.add_argument("--device", default="cuda", help="device")
parser.add_argument("--clip-len", default=16, type=int, metavar="N", help="number of frames per clip")
parser.add_argument(
"--clips-per-video", default=5, type=int, metavar="N", help="maximum number of clips per video to consider"
)
parser.add_argument("-b", "--batch-size", default=24, type=int)
parser.add_argument("--epochs", default=45, type=int, metavar="N", help="number of total epochs to run")
parser.add_argument(
"-j", "--workers", default=10, type=int, metavar="N", help="number of data loading workers (default: 10)"
)
parser.add_argument("--lr", default=0.01, type=float, help="initial learning rate")
parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
parser.add_argument(
"--wd",
"--weight-decay",
default=1e-4,
type=float,
metavar="W",
help="weight decay (default: 1e-4)",
dest="weight_decay",
)
parser.add_argument("--lr-milestones", nargs="+", default=[20, 30, 40], type=int, help="decrease lr on milestones")
parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma")
parser.add_argument("--lr-warmup-epochs", default=10, type=int, help="the number of epochs to warmup (default: 10)")
parser.add_argument("--lr-warmup-method", default="linear", type=str, help="the warmup method (default: linear)")
parser.add_argument("--lr-warmup-decay", default=0.001, type=float, help="the decay for lr")
parser.add_argument("--print-freq", default=10, type=int, help="print frequency")
parser.add_argument("--output-dir", default=".", help="path where to save")
parser.add_argument("--resume", default="", help="resume from checkpoint")
parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
parser.add_argument(
"--cache-dataset",
dest="cache_dataset",
......@@ -328,18 +348,19 @@ def parse_args():
)
# Mixed precision training parameters
parser.add_argument('--apex', action='store_true',
help='Use apex for mixed precision training')
parser.add_argument('--apex-opt-level', default='O1', type=str,
help='For apex mixed precision training'
'O0 for FP32 training, O1 for mixed precision training.'
'For further detail, see https://github.com/NVIDIA/apex/tree/master/examples/imagenet'
)
parser.add_argument("--apex", action="store_true", help="Use apex for mixed precision training")
parser.add_argument(
"--apex-opt-level",
default="O1",
type=str,
help="For apex mixed precision training"
"O0 for FP32 training, O1 for mixed precision training."
"For further detail, see https://github.com/NVIDIA/apex/tree/master/examples/imagenet",
)
# distributed training parameters
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", help="url used to set up distributed training")
args = parser.parse_args()
......
......@@ -3,16 +3,14 @@ import torch.nn as nn
class ConvertBHWCtoBCHW(nn.Module):
"""Convert tensor from (B, H, W, C) to (B, C, H, W)
"""
"""Convert tensor from (B, H, W, C) to (B, C, H, W)"""
def forward(self, vid: torch.Tensor) -> torch.Tensor:
return vid.permute(0, 3, 1, 2)
class ConvertBCHWtoCBHW(nn.Module):
"""Convert tensor from (B, C, H, W) to (C, B, H, W)
"""
"""Convert tensor from (B, C, H, W) to (C, B, H, W)"""
def forward(self, vid: torch.Tensor) -> torch.Tensor:
return vid.permute(1, 0, 2, 3)
from collections import defaultdict, deque
import datetime
import errno
import os
import time
from collections import defaultdict, deque
import torch
import torch.distributed as dist
import errno
import os
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
......@@ -32,7 +32,7 @@ class SmoothedValue(object):
"""
if not is_dist_avail_and_initialized():
return
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
dist.barrier()
dist.all_reduce(t)
t = t.tolist()
......@@ -63,11 +63,8 @@ class SmoothedValue(object):
def __str__(self):
return self.fmt.format(
median=self.median,
avg=self.avg,
global_avg=self.global_avg,
max=self.max,
value=self.value)
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
class MetricLogger(object):
......@@ -87,15 +84,12 @@ class MetricLogger(object):
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, attr))
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(
"{}: {}".format(name, str(meter))
)
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def synchronize_between_processes(self):
......@@ -108,31 +102,28 @@ class MetricLogger(object):
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ''
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt='{avg:.4f}')
data_time = SmoothedValue(fmt='{avg:.4f}')
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}',
'max mem: {memory:.0f}'
])
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join([
header,
'[{0' + space_fmt + '}/{1}]',
'eta: {eta}',
'{meters}',
'time: {time}',
'data: {data}'
])
log_msg = self.delimiter.join(
[header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
......@@ -142,21 +133,28 @@ class MetricLogger(object):
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB))
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print(log_msg.format(
i, len(iterable), eta=eta_string,
meters=str(self),
time=str(iter_time), data=str(data_time)))
print(
log_msg.format(
i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('{} Total time: {}'.format(header, total_time_str))
print("{} Total time: {}".format(header, total_time_str))
def accuracy(output, target, topk=(1,)):
......@@ -189,10 +187,11 @@ def setup_for_distributed(is_master):
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
force = kwargs.pop("force", False)
if is_master or force:
builtin_print(*args, **kwargs)
......@@ -229,26 +228,26 @@ def save_on_master(*args, **kwargs):
def init_distributed_mode(args):
if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ['WORLD_SIZE'])
args.gpu = int(os.environ['LOCAL_RANK'])
elif 'SLURM_PROCID' in os.environ:
args.rank = int(os.environ['SLURM_PROCID'])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
elif hasattr(args, "rank"):
pass
else:
print('Not using distributed mode')
print("Not using distributed mode")
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = 'nccl'
print('| distributed init (rank {}): {}'.format(
args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
args.dist_backend = "nccl"
print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
torch.distributed.init_process_group(
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
)
setup_for_distributed(args.rank == 0)
......@@ -9,7 +9,13 @@ max-line-length = 120
[flake8]
max-line-length = 120
ignore = F401,E402,F403,W503,W504,F821
ignore = E203, E402, W503, W504, F821
per-file-ignores =
__init__.py: F401, F403, F405
./hubconf.py: F401
torchvision/models/mobilenet.py: F401, F403
torchvision/models/quantization/mobilenet.py: F401, F403
test/smoke_test.py: F401
exclude = venv
[pydocstyle]
......
import os
import io
import re
import sys
from setuptools import setup, find_packages
from pkg_resources import parse_version, get_distribution, DistributionNotFound
import subprocess
import distutils.command.clean
import distutils.spawn
from distutils.version import StrictVersion
import glob
import io
import os
import re
import shutil
import subprocess
import sys
from distutils.version import StrictVersion
import torch
from pkg_resources import parse_version, get_distribution, DistributionNotFound
from setuptools import setup, find_packages
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
def read(*names, **kwargs):
with io.open(
os.path.join(os.path.dirname(__file__), *names),
encoding=kwargs.get("encoding", "utf8")
) as fp:
with io.open(os.path.join(os.path.dirname(__file__), *names), encoding=kwargs.get("encoding", "utf8")) as fp:
return fp.read()
......@@ -32,26 +29,26 @@ def get_dist(pkgname):
cwd = os.path.dirname(os.path.abspath(__file__))
version_txt = os.path.join(cwd, 'version.txt')
with open(version_txt, 'r') as f:
version_txt = os.path.join(cwd, "version.txt")
with open(version_txt, "r") as f:
version = f.readline().strip()
sha = 'Unknown'
package_name = 'torchvision'
sha = "Unknown"
package_name = "torchvision"
try:
sha = subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=cwd).decode('ascii').strip()
sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd).decode("ascii").strip()
except Exception:
pass
if os.getenv('BUILD_VERSION'):
version = os.getenv('BUILD_VERSION')
elif sha != 'Unknown':
version += '+' + sha[:7]
if os.getenv("BUILD_VERSION"):
version = os.getenv("BUILD_VERSION")
elif sha != "Unknown":
version += "+" + sha[:7]
def write_version_file():
version_path = os.path.join(cwd, 'torchvision', 'version.py')
with open(version_path, 'w') as f:
version_path = os.path.join(cwd, "torchvision", "version.py")
with open(version_path, "w") as f:
f.write("__version__ = '{}'\n".format(version))
f.write("git_version = {}\n".format(repr(sha)))
f.write("from torchvision.extension import _check_cuda_version\n")
......@@ -59,34 +56,34 @@ def write_version_file():
f.write(" cuda = _check_cuda_version()\n")
pytorch_dep = 'torch'
if os.getenv('PYTORCH_VERSION'):
pytorch_dep += "==" + os.getenv('PYTORCH_VERSION')
pytorch_dep = "torch"
if os.getenv("PYTORCH_VERSION"):
pytorch_dep += "==" + os.getenv("PYTORCH_VERSION")
requirements = [
'numpy',
"numpy",
pytorch_dep,
]
# Excluding 8.3.0 because of https://github.com/pytorch/vision/issues/4146
pillow_ver = ' >= 5.3.0, !=8.3.0'
pillow_req = 'pillow-simd' if get_dist('pillow-simd') is not None else 'pillow'
pillow_ver = " >= 5.3.0, !=8.3.0"
pillow_req = "pillow-simd" if get_dist("pillow-simd") is not None else "pillow"
requirements.append(pillow_req + pillow_ver)
def find_library(name, vision_include):
this_dir = os.path.dirname(os.path.abspath(__file__))
build_prefix = os.environ.get('BUILD_PREFIX', None)
build_prefix = os.environ.get("BUILD_PREFIX", None)
is_conda_build = build_prefix is not None
library_found = False
conda_installed = False
lib_folder = None
include_folder = None
library_header = '{0}.h'.format(name)
library_header = "{0}.h".format(name)
# Lookup in TORCHVISION_INCLUDE or in the package file
package_path = [os.path.join(this_dir, 'torchvision')]
package_path = [os.path.join(this_dir, "torchvision")]
for folder in vision_include + package_path:
candidate_path = os.path.join(folder, library_header)
library_found = os.path.exists(candidate_path)
......@@ -94,67 +91,66 @@ def find_library(name, vision_include):
break
if not library_found:
print('Running build on conda-build: {0}'.format(is_conda_build))
print("Running build on conda-build: {0}".format(is_conda_build))
if is_conda_build:
# Add conda headers/libraries
if os.name == 'nt':
build_prefix = os.path.join(build_prefix, 'Library')
include_folder = os.path.join(build_prefix, 'include')
lib_folder = os.path.join(build_prefix, 'lib')
library_header_path = os.path.join(
include_folder, library_header)
if os.name == "nt":
build_prefix = os.path.join(build_prefix, "Library")
include_folder = os.path.join(build_prefix, "include")
lib_folder = os.path.join(build_prefix, "lib")
library_header_path = os.path.join(include_folder, library_header)
library_found = os.path.isfile(library_header_path)
conda_installed = library_found
else:
# Check if using Anaconda to produce wheels
conda = distutils.spawn.find_executable('conda')
conda = distutils.spawn.find_executable("conda")
is_conda = conda is not None
print('Running build on conda: {0}'.format(is_conda))
print("Running build on conda: {0}".format(is_conda))
if is_conda:
python_executable = sys.executable
py_folder = os.path.dirname(python_executable)
if os.name == 'nt':
env_path = os.path.join(py_folder, 'Library')
if os.name == "nt":
env_path = os.path.join(py_folder, "Library")
else:
env_path = os.path.dirname(py_folder)
lib_folder = os.path.join(env_path, 'lib')
include_folder = os.path.join(env_path, 'include')
library_header_path = os.path.join(
include_folder, library_header)
lib_folder = os.path.join(env_path, "lib")
include_folder = os.path.join(env_path, "include")
library_header_path = os.path.join(include_folder, library_header)
library_found = os.path.isfile(library_header_path)
conda_installed = library_found
if not library_found:
if sys.platform == 'linux':
library_found = os.path.exists('/usr/include/{0}'.format(
library_header))
library_found = library_found or os.path.exists(
'/usr/local/include/{0}'.format(library_header))
if sys.platform == "linux":
library_found = os.path.exists("/usr/include/{0}".format(library_header))
library_found = library_found or os.path.exists("/usr/local/include/{0}".format(library_header))
return library_found, conda_installed, include_folder, lib_folder
def get_extensions():
this_dir = os.path.dirname(os.path.abspath(__file__))
extensions_dir = os.path.join(this_dir, 'torchvision', 'csrc')
extensions_dir = os.path.join(this_dir, "torchvision", "csrc")
main_file = glob.glob(os.path.join(extensions_dir, '*.cpp')) + glob.glob(os.path.join(extensions_dir, 'ops',
'*.cpp'))
main_file = glob.glob(os.path.join(extensions_dir, "*.cpp")) + glob.glob(
os.path.join(extensions_dir, "ops", "*.cpp")
)
source_cpu = (
glob.glob(os.path.join(extensions_dir, 'ops', 'autograd', '*.cpp')) +
glob.glob(os.path.join(extensions_dir, 'ops', 'cpu', '*.cpp')) +
glob.glob(os.path.join(extensions_dir, 'ops', 'quantized', 'cpu', '*.cpp'))
glob.glob(os.path.join(extensions_dir, "ops", "autograd", "*.cpp"))
+ glob.glob(os.path.join(extensions_dir, "ops", "cpu", "*.cpp"))
+ glob.glob(os.path.join(extensions_dir, "ops", "quantized", "cpu", "*.cpp"))
)
is_rocm_pytorch = False
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
TORCH_MAJOR = int(torch.__version__.split(".")[0])
TORCH_MINOR = int(torch.__version__.split(".")[1])
if TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 5):
from torch.utils.cpp_extension import ROCM_HOME
is_rocm_pytorch = True if ((torch.version.hip is not None) and (ROCM_HOME is not None)) else False
if is_rocm_pytorch:
from torch.utils.hipify import hipify_python
hipify_python.hipify(
project_directory=this_dir,
output_directory=this_dir,
......@@ -162,25 +158,25 @@ def get_extensions():
show_detailed=True,
is_pytorch_extension=True,
)
source_cuda = glob.glob(os.path.join(extensions_dir, 'ops', 'hip', '*.hip'))
source_cuda = glob.glob(os.path.join(extensions_dir, "ops", "hip", "*.hip"))
# Copy over additional files
for file in glob.glob(r"torchvision/csrc/ops/cuda/*.h"):
shutil.copy(file, "torchvision/csrc/ops/hip")
else:
source_cuda = glob.glob(os.path.join(extensions_dir, 'ops', 'cuda', '*.cu'))
source_cuda = glob.glob(os.path.join(extensions_dir, "ops", "cuda", "*.cu"))
source_cuda += glob.glob(os.path.join(extensions_dir, 'ops', 'autocast', '*.cpp'))
source_cuda += glob.glob(os.path.join(extensions_dir, "ops", "autocast", "*.cpp"))
sources = main_file + source_cpu
extension = CppExtension
compile_cpp_tests = os.getenv('WITH_CPP_MODELS_TEST', '0') == '1'
compile_cpp_tests = os.getenv("WITH_CPP_MODELS_TEST", "0") == "1"
if compile_cpp_tests:
test_dir = os.path.join(this_dir, 'test')
models_dir = os.path.join(this_dir, 'torchvision', 'csrc', 'models')
test_file = glob.glob(os.path.join(test_dir, '*.cpp'))
source_models = glob.glob(os.path.join(models_dir, '*.cpp'))
test_dir = os.path.join(this_dir, "test")
models_dir = os.path.join(this_dir, "torchvision", "csrc", "models")
test_file = glob.glob(os.path.join(test_dir, "*.cpp"))
source_models = glob.glob(os.path.join(models_dir, "*.cpp"))
test_file = [os.path.join(test_dir, s) for s in test_file]
source_models = [os.path.join(models_dir, s) for s in source_models]
......@@ -189,39 +185,38 @@ def get_extensions():
define_macros = []
extra_compile_args = {'cxx': []}
if (torch.cuda.is_available() and ((CUDA_HOME is not None) or is_rocm_pytorch)) \
or os.getenv('FORCE_CUDA', '0') == '1':
extra_compile_args = {"cxx": []}
if (torch.cuda.is_available() and ((CUDA_HOME is not None) or is_rocm_pytorch)) or os.getenv(
"FORCE_CUDA", "0"
) == "1":
extension = CUDAExtension
sources += source_cuda
if not is_rocm_pytorch:
define_macros += [('WITH_CUDA', None)]
nvcc_flags = os.getenv('NVCC_FLAGS', '')
if nvcc_flags == '':
define_macros += [("WITH_CUDA", None)]
nvcc_flags = os.getenv("NVCC_FLAGS", "")
if nvcc_flags == "":
nvcc_flags = []
else:
nvcc_flags = nvcc_flags.split(' ')
nvcc_flags = nvcc_flags.split(" ")
else:
define_macros += [('WITH_HIP', None)]
define_macros += [("WITH_HIP", None)]
nvcc_flags = []
extra_compile_args["nvcc"] = nvcc_flags
if sys.platform == 'win32':
define_macros += [('torchvision_EXPORTS', None)]
if sys.platform == "win32":
define_macros += [("torchvision_EXPORTS", None)]
extra_compile_args['cxx'].append('/MP')
extra_compile_args["cxx"].append("/MP")
debug_mode = os.getenv('DEBUG', '0') == '1'
debug_mode = os.getenv("DEBUG", "0") == "1"
if debug_mode:
print("Compile in debug mode")
extra_compile_args['cxx'].append("-g")
extra_compile_args['cxx'].append("-O0")
extra_compile_args["cxx"].append("-g")
extra_compile_args["cxx"].append("-O0")
if "nvcc" in extra_compile_args:
# we have to remove "-OX" and "-g" flag if exists and append
nvcc_flags = extra_compile_args["nvcc"]
extra_compile_args["nvcc"] = [
f for f in nvcc_flags if not ("-O" in f or "-g" in f)
]
extra_compile_args["nvcc"] = [f for f in nvcc_flags if not ("-O" in f or "-g" in f)]
extra_compile_args["nvcc"].append("-O0")
extra_compile_args["nvcc"].append("-g")
......@@ -231,7 +226,7 @@ def get_extensions():
ext_modules = [
extension(
'torchvision._C',
"torchvision._C",
sorted(sources),
include_dirs=include_dirs,
define_macros=define_macros,
......@@ -241,7 +236,7 @@ def get_extensions():
if compile_cpp_tests:
ext_modules.append(
extension(
'torchvision._C_tests',
"torchvision._C_tests",
tests,
include_dirs=tests_include_dirs,
define_macros=define_macros,
......@@ -250,12 +245,10 @@ def get_extensions():
)
# ------------------- Torchvision extra extensions ------------------------
vision_include = os.environ.get('TORCHVISION_INCLUDE', None)
vision_library = os.environ.get('TORCHVISION_LIBRARY', None)
vision_include = (vision_include.split(os.pathsep)
if vision_include is not None else [])
vision_library = (vision_library.split(os.pathsep)
if vision_library is not None else [])
vision_include = os.environ.get("TORCHVISION_INCLUDE", None)
vision_library = os.environ.get("TORCHVISION_LIBRARY", None)
vision_include = vision_include.split(os.pathsep) if vision_include is not None else []
vision_library = vision_library.split(os.pathsep) if vision_library is not None else []
include_dirs += vision_include
library_dirs = vision_library
......@@ -266,56 +259,49 @@ def get_extensions():
image_link_flags = []
# Locating libPNG
libpng = distutils.spawn.find_executable('libpng-config')
pngfix = distutils.spawn.find_executable('pngfix')
libpng = distutils.spawn.find_executable("libpng-config")
pngfix = distutils.spawn.find_executable("pngfix")
png_found = libpng is not None or pngfix is not None
print('PNG found: {0}'.format(png_found))
print("PNG found: {0}".format(png_found))
if png_found:
if libpng is not None:
# Linux / Mac
png_version = subprocess.run([libpng, '--version'],
stdout=subprocess.PIPE)
png_version = png_version.stdout.strip().decode('utf-8')
print('libpng version: {0}'.format(png_version))
png_version = subprocess.run([libpng, "--version"], stdout=subprocess.PIPE)
png_version = png_version.stdout.strip().decode("utf-8")
print("libpng version: {0}".format(png_version))
png_version = parse_version(png_version)
if png_version >= parse_version("1.6.0"):
print('Building torchvision with PNG image support')
png_lib = subprocess.run([libpng, '--libdir'],
stdout=subprocess.PIPE)
png_lib = png_lib.stdout.strip().decode('utf-8')
if 'disabled' not in png_lib:
print("Building torchvision with PNG image support")
png_lib = subprocess.run([libpng, "--libdir"], stdout=subprocess.PIPE)
png_lib = png_lib.stdout.strip().decode("utf-8")
if "disabled" not in png_lib:
image_library += [png_lib]
png_include = subprocess.run([libpng, '--I_opts'],
stdout=subprocess.PIPE)
png_include = png_include.stdout.strip().decode('utf-8')
_, png_include = png_include.split('-I')
print('libpng include path: {0}'.format(png_include))
png_include = subprocess.run([libpng, "--I_opts"], stdout=subprocess.PIPE)
png_include = png_include.stdout.strip().decode("utf-8")
_, png_include = png_include.split("-I")
print("libpng include path: {0}".format(png_include))
image_include += [png_include]
image_link_flags.append('png')
image_link_flags.append("png")
else:
print('libpng installed version is less than 1.6.0, '
'disabling PNG support')
print("libpng installed version is less than 1.6.0, " "disabling PNG support")
png_found = False
else:
# Windows
png_lib = os.path.join(
os.path.dirname(os.path.dirname(pngfix)), 'lib')
png_include = os.path.join(os.path.dirname(
os.path.dirname(pngfix)), 'include', 'libpng16')
png_lib = os.path.join(os.path.dirname(os.path.dirname(pngfix)), "lib")
png_include = os.path.join(os.path.dirname(os.path.dirname(pngfix)), "include", "libpng16")
image_library += [png_lib]
image_include += [png_include]
image_link_flags.append('libpng')
image_link_flags.append("libpng")
# Locating libjpeg
(jpeg_found, jpeg_conda,
jpeg_include, jpeg_lib) = find_library('jpeglib', vision_include)
(jpeg_found, jpeg_conda, jpeg_include, jpeg_lib) = find_library("jpeglib", vision_include)
print('JPEG found: {0}'.format(jpeg_found))
image_macros += [('PNG_FOUND', str(int(png_found)))]
image_macros += [('JPEG_FOUND', str(int(jpeg_found)))]
print("JPEG found: {0}".format(jpeg_found))
image_macros += [("PNG_FOUND", str(int(png_found)))]
image_macros += [("JPEG_FOUND", str(int(jpeg_found)))]
if jpeg_found:
print('Building torchvision with JPEG image support')
image_link_flags.append('jpeg')
print("Building torchvision with JPEG image support")
image_link_flags.append("jpeg")
if jpeg_conda:
image_library += [jpeg_lib]
image_include += [jpeg_include]
......@@ -323,80 +309,71 @@ def get_extensions():
# Locating nvjpeg
# Should be included in CUDA_HOME for CUDA >= 10.1, which is the minimum version we have in the CI
nvjpeg_found = (
extension is CUDAExtension and
CUDA_HOME is not None and
os.path.exists(os.path.join(CUDA_HOME, 'include', 'nvjpeg.h'))
extension is CUDAExtension
and CUDA_HOME is not None
and os.path.exists(os.path.join(CUDA_HOME, "include", "nvjpeg.h"))
)
print('NVJPEG found: {0}'.format(nvjpeg_found))
image_macros += [('NVJPEG_FOUND', str(int(nvjpeg_found)))]
print("NVJPEG found: {0}".format(nvjpeg_found))
image_macros += [("NVJPEG_FOUND", str(int(nvjpeg_found)))]
if nvjpeg_found:
print('Building torchvision with NVJPEG image support')
image_link_flags.append('nvjpeg')
image_path = os.path.join(extensions_dir, 'io', 'image')
image_src = (glob.glob(os.path.join(image_path, '*.cpp')) + glob.glob(os.path.join(image_path, 'cpu', '*.cpp'))
+ glob.glob(os.path.join(image_path, 'cuda', '*.cpp')))
print("Building torchvision with NVJPEG image support")
image_link_flags.append("nvjpeg")
image_path = os.path.join(extensions_dir, "io", "image")
image_src = (
glob.glob(os.path.join(image_path, "*.cpp"))
+ glob.glob(os.path.join(image_path, "cpu", "*.cpp"))
+ glob.glob(os.path.join(image_path, "cuda", "*.cpp"))
)
if png_found or jpeg_found:
ext_modules.append(extension(
'torchvision.image',
image_src,
include_dirs=image_include + include_dirs + [image_path],
library_dirs=image_library + library_dirs,
define_macros=image_macros,
libraries=image_link_flags,
extra_compile_args=extra_compile_args
))
ffmpeg_exe = distutils.spawn.find_executable('ffmpeg')
ext_modules.append(
extension(
"torchvision.image",
image_src,
include_dirs=image_include + include_dirs + [image_path],
library_dirs=image_library + library_dirs,
define_macros=image_macros,
libraries=image_link_flags,
extra_compile_args=extra_compile_args,
)
)
ffmpeg_exe = distutils.spawn.find_executable("ffmpeg")
has_ffmpeg = ffmpeg_exe is not None
# FIXME: Building torchvision with ffmpeg on MacOS or with Python 3.9
# FIXME: causes crash. See the following GitHub issues for more details.
# FIXME: https://github.com/pytorch/pytorch/issues/65000
# FIXME: https://github.com/pytorch/vision/issues/3367
if sys.platform != 'linux' or (
sys.version_info.major == 3 and sys.version_info.minor == 9):
if sys.platform != "linux" or (sys.version_info.major == 3 and sys.version_info.minor == 9):
has_ffmpeg = False
if has_ffmpeg:
try:
# This is to check if ffmpeg is installed properly.
subprocess.check_output(["ffmpeg", "-version"])
except subprocess.CalledProcessError:
print('Error fetching ffmpeg version, ignoring ffmpeg.')
print("Error fetching ffmpeg version, ignoring ffmpeg.")
has_ffmpeg = False
print("FFmpeg found: {}".format(has_ffmpeg))
if has_ffmpeg:
ffmpeg_libraries = {
'libavcodec',
'libavformat',
'libavutil',
'libswresample',
'libswscale'
}
ffmpeg_libraries = {"libavcodec", "libavformat", "libavutil", "libswresample", "libswscale"}
ffmpeg_bin = os.path.dirname(ffmpeg_exe)
ffmpeg_root = os.path.dirname(ffmpeg_bin)
ffmpeg_include_dir = os.path.join(ffmpeg_root, 'include')
ffmpeg_library_dir = os.path.join(ffmpeg_root, 'lib')
ffmpeg_include_dir = os.path.join(ffmpeg_root, "include")
ffmpeg_library_dir = os.path.join(ffmpeg_root, "lib")
gcc = distutils.spawn.find_executable('gcc')
platform_tag = subprocess.run(
[gcc, '-print-multiarch'], stdout=subprocess.PIPE)
platform_tag = platform_tag.stdout.strip().decode('utf-8')
gcc = distutils.spawn.find_executable("gcc")
platform_tag = subprocess.run([gcc, "-print-multiarch"], stdout=subprocess.PIPE)
platform_tag = platform_tag.stdout.strip().decode("utf-8")
if platform_tag:
# Most probably a Debian-based distribution
ffmpeg_include_dir = [
ffmpeg_include_dir,
os.path.join(ffmpeg_include_dir, platform_tag)
]
ffmpeg_library_dir = [
ffmpeg_library_dir,
os.path.join(ffmpeg_library_dir, platform_tag)
]
ffmpeg_include_dir = [ffmpeg_include_dir, os.path.join(ffmpeg_include_dir, platform_tag)]
ffmpeg_library_dir = [ffmpeg_library_dir, os.path.join(ffmpeg_library_dir, platform_tag)]
else:
ffmpeg_include_dir = [ffmpeg_include_dir]
ffmpeg_library_dir = [ffmpeg_library_dir]
......@@ -405,11 +382,11 @@ def get_extensions():
for library in ffmpeg_libraries:
library_found = False
for search_path in ffmpeg_include_dir + include_dirs:
full_path = os.path.join(search_path, library, '*.h')
full_path = os.path.join(search_path, library, "*.h")
library_found |= len(glob.glob(full_path)) > 0
if not library_found:
print(f'{library} header files were not found, disabling ffmpeg support')
print(f"{library} header files were not found, disabling ffmpeg support")
has_ffmpeg = False
if has_ffmpeg:
......@@ -417,22 +394,21 @@ def get_extensions():
print("ffmpeg library_dir: {}".format(ffmpeg_library_dir))
# TorchVision base decoder + video reader
video_reader_src_dir = os.path.join(this_dir, 'torchvision', 'csrc', 'io', 'video_reader')
video_reader_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "video_reader")
video_reader_src = glob.glob(os.path.join(video_reader_src_dir, "*.cpp"))
base_decoder_src_dir = os.path.join(this_dir, 'torchvision', 'csrc', 'io', 'decoder')
base_decoder_src = glob.glob(
os.path.join(base_decoder_src_dir, "*.cpp"))
base_decoder_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "decoder")
base_decoder_src = glob.glob(os.path.join(base_decoder_src_dir, "*.cpp"))
# Torchvision video API
videoapi_src_dir = os.path.join(this_dir, 'torchvision', 'csrc', 'io', 'video')
videoapi_src_dir = os.path.join(this_dir, "torchvision", "csrc", "io", "video")
videoapi_src = glob.glob(os.path.join(videoapi_src_dir, "*.cpp"))
# exclude tests
base_decoder_src = [x for x in base_decoder_src if '_test.cpp' not in x]
base_decoder_src = [x for x in base_decoder_src if "_test.cpp" not in x]
combined_src = video_reader_src + base_decoder_src + videoapi_src
ext_modules.append(
CppExtension(
'torchvision.video_reader',
"torchvision.video_reader",
combined_src,
include_dirs=[
base_decoder_src_dir,
......@@ -440,18 +416,18 @@ def get_extensions():
videoapi_src_dir,
extensions_dir,
*ffmpeg_include_dir,
*include_dirs
*include_dirs,
],
library_dirs=ffmpeg_library_dir + library_dirs,
libraries=[
'avcodec',
'avformat',
'avutil',
'swresample',
'swscale',
"avcodec",
"avformat",
"avutil",
"swresample",
"swscale",
],
extra_compile_args=["-std=c++14"] if os.name != 'nt' else ['/std:c++14', '/MP'],
extra_link_args=["-std=c++14" if os.name != 'nt' else '/std:c++14'],
extra_compile_args=["-std=c++14"] if os.name != "nt" else ["/std:c++14", "/MP"],
extra_link_args=["-std=c++14" if os.name != "nt" else "/std:c++14"],
)
)
......@@ -460,9 +436,9 @@ def get_extensions():
class clean(distutils.command.clean.clean):
def run(self):
with open('.gitignore', 'r') as f:
with open(".gitignore", "r") as f:
ignores = f.read()
for wildcard in filter(None, ignores.split('\n')):
for wildcard in filter(None, ignores.split("\n")):
for filename in glob.glob(wildcard):
try:
os.remove(filename)
......@@ -478,25 +454,22 @@ if __name__ == "__main__":
write_version_file()
with open('README.rst') as f:
with open("README.rst") as f:
readme = f.read()
setup(
# Metadata
name=package_name,
version=version,
author='PyTorch Core Team',
author_email='soumith@pytorch.org',
url='https://github.com/pytorch/vision',
description='image and video datasets and models for torch deep learning',
author="PyTorch Core Team",
author_email="soumith@pytorch.org",
url="https://github.com/pytorch/vision",
description="image and video datasets and models for torch deep learning",
long_description=readme,
license='BSD',
license="BSD",
# Package info
packages=find_packages(exclude=('test',)),
package_data={
package_name: ['*.dll', '*.dylib', '*.so', '*.categories']
},
packages=find_packages(exclude=("test",)),
package_data={package_name: ["*.dll", "*.dylib", "*.so", "*.categories"]},
zip_safe=False,
install_requires=requirements,
extras_require={
......@@ -504,7 +477,7 @@ if __name__ == "__main__":
},
ext_modules=get_extensions(),
cmdclass={
'build_ext': BuildExtension.with_options(no_python_abi_suffix=True),
'clean': clean,
}
"build_ext": BuildExtension.with_options(no_python_abi_suffix=True),
"clean": clean,
},
)
import argparse
import contextlib
import functools
import inspect
import os
import random
import shutil
import sys
import tempfile
import contextlib
import unittest
from collections import OrderedDict
from numbers import Number
import numpy as np
import pytest
import argparse
import sys
import torch
import __main__
import random
import inspect
import functools
from numbers import Number
from PIL import Image
from torch._six import string_classes
from collections import OrderedDict
from torchvision import io
import numpy as np
from PIL import Image
import __main__
IN_CIRCLE_CI = os.getenv("CIRCLECI", False) == 'true'
IN_CIRCLE_CI = os.getenv("CIRCLECI", False) == "true"
IN_RE_WORKER = os.environ.get("INSIDE_RE_WORKER") is not None
IN_FBCODE = os.environ.get("IN_FBCODE_TORCHVISION") == "1"
CUDA_NOT_AVAILABLE_MSG = 'CUDA device not available'
CUDA_NOT_AVAILABLE_MSG = "CUDA device not available"
CIRCLECI_GPU_NO_CUDA_MSG = "We're in a CircleCI GPU machine, and this test doesn't need cuda."
......@@ -95,7 +95,7 @@ def freeze_rng_state():
def cycle_over(objs):
for idx, obj1 in enumerate(objs):
for obj2 in objs[:idx] + objs[idx + 1:]:
for obj2 in objs[:idx] + objs[idx + 1 :]:
yield obj1, obj2
......@@ -117,11 +117,13 @@ def disable_console_output():
def cpu_and_gpu():
import pytest # noqa
return ('cpu', pytest.param('cuda', marks=pytest.mark.needs_cuda))
return ("cpu", pytest.param("cuda", marks=pytest.mark.needs_cuda))
def needs_cuda(test_func):
import pytest # noqa
return pytest.mark.needs_cuda(test_func)
......@@ -139,12 +141,7 @@ def _create_data(height=3, width=3, channels=3, device="cpu"):
def _create_data_batch(height=3, width=3, channels=3, num_samples=4, device="cpu"):
# TODO: When all relevant tests are ported to pytest, turn this into a module-level fixture
batch_tensor = torch.randint(
0, 256,
(num_samples, channels, height, width),
dtype=torch.uint8,
device=device
)
batch_tensor = torch.randint(0, 256, (num_samples, channels, height, width), dtype=torch.uint8, device=device)
return batch_tensor
......@@ -180,8 +177,9 @@ def _assert_equal_tensor_to_pil(tensor, pil_image, msg=None):
assert_equal(tensor.cpu(), pil_tensor, msg=msg)
def _assert_approx_equal_tensor_to_pil(tensor, pil_image, tol=1e-5, msg=None, agg_method="mean",
allowed_percentage_diff=None):
def _assert_approx_equal_tensor_to_pil(
tensor, pil_image, tol=1e-5, msg=None, agg_method="mean", allowed_percentage_diff=None
):
# TODO: we could just merge this into _assert_equal_tensor_to_pil
np_pil_image = np.array(pil_image)
if np_pil_image.ndim == 2:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment