Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
3926c905
"examples/hubert/lightning_modules.py" did not exist on "030646c004e652853628706de350b159f0912da9"
Unverified
Commit
3926c905
authored
Apr 14, 2021
by
Nicolas Hug
Committed by
GitHub
Apr 14, 2021
Browse files
put back error on warnings for sphinx (#3671)
parent
47834820
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
7 additions
and
10 deletions
+7
-10
docs/Makefile
docs/Makefile
+1
-1
torchvision/ops/deform_conv.py
torchvision/ops/deform_conv.py
+6
-9
No files found.
docs/Makefile
View file @
3926c905
...
@@ -2,7 +2,7 @@
...
@@ -2,7 +2,7 @@
#
#
# You can set these variables from the command line.
# You can set these variables from the command line.
SPHINXOPTS
=
#
-W # turn warnings into errors
SPHINXOPTS
=
-W
# turn warnings into errors
SPHINXBUILD
=
sphinx-build
SPHINXBUILD
=
sphinx-build
SPHINXPROJ
=
torchvision
SPHINXPROJ
=
torchvision
SOURCEDIR
=
source
SOURCEDIR
=
source
...
...
torchvision/ops/deform_conv.py
View file @
3926c905
...
@@ -29,24 +29,21 @@ def deform_conv2d(
...
@@ -29,24 +29,21 @@ def deform_conv2d(
Args:
Args:
input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor
input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor
offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width,
offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width, out_height, out_width]):
out_height, out_width]): offsets to be applied for each position in the
offsets to be applied for each position in the convolution kernel.
convolution kernel.
weight (Tensor[out_channels, in_channels // groups, kernel_height, kernel_width]): convolution weights,
weight (Tensor[out_channels, in_channels // groups, kernel_height, kernel_width]):
split into groups of size (in_channels // groups)
convolution weights, split into groups of size (in_channels // groups)
bias (Tensor[out_channels]): optional bias of shape (out_channels,). Default: None
bias (Tensor[out_channels]): optional bias of shape (out_channels,). Default: None
stride (int or Tuple[int, int]): distance between convolution centers. Default: 1
stride (int or Tuple[int, int]): distance between convolution centers. Default: 1
padding (int or Tuple[int, int]): height/width of padding of zeroes around
padding (int or Tuple[int, int]): height/width of padding of zeroes around
each image. Default: 0
each image. Default: 0
dilation (int or Tuple[int, int]): the spacing between kernel elements. Default: 1
dilation (int or Tuple[int, int]): the spacing between kernel elements. Default: 1
mask (Tensor[batch_size, offset_groups * kernel_height * kernel_width,
mask (Tensor[batch_size, offset_groups * kernel_height * kernel_width, out_height, out_width]):
out_height, out_width]): masks to be applied for each position in the
masks to be applied for each position in the convolution kernel. Default: None
convolution kernel. Default: None
Returns:
Returns:
Tensor[batch_sz, out_channels, out_h, out_w]: result of convolution
Tensor[batch_sz, out_channels, out_h, out_w]: result of convolution
Examples::
Examples::
>>> input = torch.rand(4, 3, 10, 10)
>>> input = torch.rand(4, 3, 10, 10)
>>> kh, kw = 3, 3
>>> kh, kw = 3, 3
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment