Unverified Commit 30b879fc authored by Philip Meier's avatar Philip Meier Committed by GitHub
Browse files

Cleanup prototype kernel signatures (#6648)

* pass metadata directly after input in prototype kernels

* rename img to image
parent dc07ac2a
......@@ -632,7 +632,7 @@ def test_correctness_pad_bounding_box(device, padding):
bboxes_format = bboxes.format
bboxes_image_size = bboxes.image_size
output_boxes = F.pad_bounding_box(bboxes, padding, format=bboxes_format)
output_boxes = F.pad_bounding_box(bboxes, format=bboxes_format, padding=padding)
if bboxes.ndim < 2 or bboxes.shape[0] == 0:
bboxes = [bboxes]
......@@ -781,7 +781,7 @@ def test_correctness_center_crop_bounding_box(device, output_size):
bboxes_format = bboxes.format
bboxes_image_size = bboxes.image_size
output_boxes = F.center_crop_bounding_box(bboxes, bboxes_format, output_size, bboxes_image_size)
output_boxes = F.center_crop_bounding_box(bboxes, bboxes_format, bboxes_image_size, output_size)
if bboxes.ndim < 2:
bboxes = [bboxes]
......
......@@ -83,7 +83,7 @@ class BoundingBox(_Feature):
max_size: Optional[int] = None,
antialias: bool = False,
) -> BoundingBox:
output = self._F.resize_bounding_box(self, size, image_size=self.image_size, max_size=max_size)
output = self._F.resize_bounding_box(self, image_size=self.image_size, size=size, max_size=max_size)
if isinstance(size, int):
size = [size]
image_size = (size[0], size[0]) if len(size) == 1 else (size[0], size[1])
......@@ -95,7 +95,7 @@ class BoundingBox(_Feature):
def center_crop(self, output_size: List[int]) -> BoundingBox:
output = self._F.center_crop_bounding_box(
self, format=self.format, output_size=output_size, image_size=self.image_size
self, format=self.format, image_size=self.image_size, output_size=output_size
)
if isinstance(output_size, int):
output_size = [output_size]
......@@ -126,7 +126,7 @@ class BoundingBox(_Feature):
if not isinstance(padding, int):
padding = list(padding)
output = self._F.pad_bounding_box(self, padding, format=self.format, padding_mode=padding_mode)
output = self._F.pad_bounding_box(self, format=self.format, padding=padding, padding_mode=padding_mode)
# Update output image size:
left, right, top, bottom = self._F._geometry._parse_pad_padding(padding)
......
......@@ -10,11 +10,11 @@ erase_image_tensor = _FT.erase
@torch.jit.unused
def erase_image_pil(
img: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
image: PIL.Image.Image, i: int, j: int, h: int, w: int, v: torch.Tensor, inplace: bool = False
) -> PIL.Image.Image:
t_img = pil_to_tensor(img)
t_img = pil_to_tensor(image)
output = erase_image_tensor(t_img, i=i, j=j, h=h, w=w, v=v, inplace=inplace)
return to_pil_image(output, mode=img.mode)
return to_pil_image(output, mode=image.mode)
def erase(
......
......@@ -21,7 +21,7 @@ def normalize(
def gaussian_blur_image_tensor(
img: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
image: torch.Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> torch.Tensor:
# TODO: consider deprecating integers from sigma on the future
if isinstance(kernel_size, int):
......@@ -47,16 +47,16 @@ def gaussian_blur_image_tensor(
if s <= 0.0:
raise ValueError(f"sigma should have positive values. Got {sigma}")
return _FT.gaussian_blur(img, kernel_size, sigma)
return _FT.gaussian_blur(image, kernel_size, sigma)
@torch.jit.unused
def gaussian_blur_image_pil(
img: PIL.Image.Image, kernel_size: List[int], sigma: Optional[List[float]] = None
image: PIL.Image.Image, kernel_size: List[int], sigma: Optional[List[float]] = None
) -> PIL.Image.Image:
t_img = pil_to_tensor(img)
t_img = pil_to_tensor(image)
output = gaussian_blur_image_tensor(t_img, kernel_size=kernel_size, sigma=sigma)
return to_pil_image(output, mode=img.mode)
return to_pil_image(output, mode=image.mode)
def gaussian_blur(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment