Unverified Commit 2ec0e847 authored by Nicolas Hug's avatar Nicolas Hug Committed by GitHub
Browse files

New schema for metrics in weights meta-data (#6047)

* Classif models

* Detection

* Segmentation

* quantization

* Video

* optical flow

* tests

* Fix docs

* Fix Video dataset

* Consistency for RAFT dataset names

* use ImageNet-1K

* Use COCO-val2017-VOC-labels for segmentation

* formatting
parent 2a35dde3
......@@ -183,9 +183,11 @@ class Inception_V3_QuantizedWeights(WeightsEnum):
"backend": "fbgemm",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#post-training-quantized-models",
"unquantized": Inception_V3_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 77.176,
"acc@5": 93.354,
"_metrics": {
"ImageNet-1K": {
"acc@1": 77.176,
"acc@5": 93.354,
}
},
"_docs": """
These weights were produced by doing Post Training Quantization (eager mode) on top of the unquantized
......
......@@ -75,9 +75,11 @@ class MobileNet_V2_QuantizedWeights(WeightsEnum):
"backend": "qnnpack",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv2",
"unquantized": MobileNet_V2_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 71.658,
"acc@5": 90.150,
"_metrics": {
"ImageNet-1K": {
"acc@1": 71.658,
"acc@5": 90.150,
}
},
"_docs": """
These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
......
......@@ -169,9 +169,11 @@ class MobileNet_V3_Large_QuantizedWeights(WeightsEnum):
"backend": "qnnpack",
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#qat-mobilenetv3",
"unquantized": MobileNet_V3_Large_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 73.004,
"acc@5": 90.858,
"_metrics": {
"ImageNet-1K": {
"acc@1": 73.004,
"acc@5": 90.858,
}
},
"_docs": """
These weights were produced by doing Quantization Aware Training (eager mode) on top of the unquantized
......
......@@ -169,9 +169,11 @@ class ResNet18_QuantizedWeights(WeightsEnum):
**_COMMON_META,
"num_params": 11689512,
"unquantized": ResNet18_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 69.494,
"acc@5": 88.882,
"_metrics": {
"ImageNet-1K": {
"acc@1": 69.494,
"acc@5": 88.882,
}
},
},
)
......@@ -186,9 +188,11 @@ class ResNet50_QuantizedWeights(WeightsEnum):
**_COMMON_META,
"num_params": 25557032,
"unquantized": ResNet50_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 75.920,
"acc@5": 92.814,
"_metrics": {
"ImageNet-1K": {
"acc@1": 75.920,
"acc@5": 92.814,
}
},
},
)
......@@ -199,9 +203,11 @@ class ResNet50_QuantizedWeights(WeightsEnum):
**_COMMON_META,
"num_params": 25557032,
"unquantized": ResNet50_Weights.IMAGENET1K_V2,
"metrics": {
"acc@1": 80.282,
"acc@5": 94.976,
"_metrics": {
"ImageNet-1K": {
"acc@1": 80.282,
"acc@5": 94.976,
}
},
},
)
......@@ -216,9 +222,11 @@ class ResNeXt101_32X8D_QuantizedWeights(WeightsEnum):
**_COMMON_META,
"num_params": 88791336,
"unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 78.986,
"acc@5": 94.480,
"_metrics": {
"ImageNet-1K": {
"acc@1": 78.986,
"acc@5": 94.480,
}
},
},
)
......@@ -229,9 +237,11 @@ class ResNeXt101_32X8D_QuantizedWeights(WeightsEnum):
**_COMMON_META,
"num_params": 88791336,
"unquantized": ResNeXt101_32X8D_Weights.IMAGENET1K_V2,
"metrics": {
"acc@1": 82.574,
"acc@5": 96.132,
"_metrics": {
"ImageNet-1K": {
"acc@1": 82.574,
"acc@5": 96.132,
}
},
},
)
......@@ -247,9 +257,11 @@ class ResNeXt101_64X4D_QuantizedWeights(WeightsEnum):
"num_params": 83455272,
"recipe": "https://github.com/pytorch/vision/pull/5935",
"unquantized": ResNeXt101_64X4D_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 82.898,
"acc@5": 96.326,
"_metrics": {
"ImageNet-1K": {
"acc@1": 82.898,
"acc@5": 96.326,
}
},
},
)
......
......@@ -133,9 +133,11 @@ class ShuffleNet_V2_X0_5_QuantizedWeights(WeightsEnum):
**_COMMON_META,
"num_params": 1366792,
"unquantized": ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 57.972,
"acc@5": 79.780,
"_metrics": {
"ImageNet-1K": {
"acc@1": 57.972,
"acc@5": 79.780,
}
},
},
)
......@@ -150,9 +152,11 @@ class ShuffleNet_V2_X1_0_QuantizedWeights(WeightsEnum):
**_COMMON_META,
"num_params": 2278604,
"unquantized": ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 68.360,
"acc@5": 87.582,
"_metrics": {
"ImageNet-1K": {
"acc@1": 68.360,
"acc@5": 87.582,
}
},
},
)
......@@ -168,9 +172,11 @@ class ShuffleNet_V2_X1_5_QuantizedWeights(WeightsEnum):
"recipe": "https://github.com/pytorch/vision/pull/5906",
"num_params": 3503624,
"unquantized": ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 72.052,
"acc@5": 90.700,
"_metrics": {
"ImageNet-1K": {
"acc@1": 72.052,
"acc@5": 90.700,
}
},
},
)
......@@ -186,9 +192,11 @@ class ShuffleNet_V2_X2_0_QuantizedWeights(WeightsEnum):
"recipe": "https://github.com/pytorch/vision/pull/5906",
"num_params": 7393996,
"unquantized": ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1,
"metrics": {
"acc@1": 75.354,
"acc@5": 92.488,
"_metrics": {
"ImageNet-1K": {
"acc@1": 75.354,
"acc@5": 92.488,
}
},
},
)
......
This diff is collapsed.
......@@ -317,9 +317,11 @@ class ResNet18_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 11689512,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
"metrics": {
"acc@1": 69.758,
"acc@5": 89.078,
"_metrics": {
"ImageNet-1K": {
"acc@1": 69.758,
"acc@5": 89.078,
}
},
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
},
......@@ -335,9 +337,11 @@ class ResNet34_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 21797672,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
"metrics": {
"acc@1": 73.314,
"acc@5": 91.420,
"_metrics": {
"ImageNet-1K": {
"acc@1": 73.314,
"acc@5": 91.420,
}
},
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
},
......@@ -353,9 +357,11 @@ class ResNet50_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 25557032,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
"metrics": {
"acc@1": 76.130,
"acc@5": 92.862,
"_metrics": {
"ImageNet-1K": {
"acc@1": 76.130,
"acc@5": 92.862,
}
},
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
},
......@@ -367,9 +373,11 @@ class ResNet50_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 25557032,
"recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
"metrics": {
"acc@1": 80.858,
"acc@5": 95.434,
"_metrics": {
"ImageNet-1K": {
"acc@1": 80.858,
"acc@5": 95.434,
}
},
"_docs": """
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
......@@ -388,9 +396,11 @@ class ResNet101_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 44549160,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
"metrics": {
"acc@1": 77.374,
"acc@5": 93.546,
"_metrics": {
"ImageNet-1K": {
"acc@1": 77.374,
"acc@5": 93.546,
}
},
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
},
......@@ -402,9 +412,11 @@ class ResNet101_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 44549160,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
"metrics": {
"acc@1": 81.886,
"acc@5": 95.780,
"_metrics": {
"ImageNet-1K": {
"acc@1": 81.886,
"acc@5": 95.780,
}
},
"_docs": """
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
......@@ -423,9 +435,11 @@ class ResNet152_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 60192808,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
"metrics": {
"acc@1": 78.312,
"acc@5": 94.046,
"_metrics": {
"ImageNet-1K": {
"acc@1": 78.312,
"acc@5": 94.046,
}
},
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
},
......@@ -437,9 +451,11 @@ class ResNet152_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 60192808,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
"metrics": {
"acc@1": 82.284,
"acc@5": 96.002,
"_metrics": {
"ImageNet-1K": {
"acc@1": 82.284,
"acc@5": 96.002,
}
},
"_docs": """
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
......@@ -458,9 +474,11 @@ class ResNeXt50_32X4D_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 25028904,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
"metrics": {
"acc@1": 77.618,
"acc@5": 93.698,
"_metrics": {
"ImageNet-1K": {
"acc@1": 77.618,
"acc@5": 93.698,
}
},
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
},
......@@ -472,9 +490,11 @@ class ResNeXt50_32X4D_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 25028904,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
"metrics": {
"acc@1": 81.198,
"acc@5": 95.340,
"_metrics": {
"ImageNet-1K": {
"acc@1": 81.198,
"acc@5": 95.340,
}
},
"_docs": """
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
......@@ -493,9 +513,11 @@ class ResNeXt101_32X8D_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 88791336,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
"metrics": {
"acc@1": 79.312,
"acc@5": 94.526,
"_metrics": {
"ImageNet-1K": {
"acc@1": 79.312,
"acc@5": 94.526,
}
},
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
},
......@@ -507,9 +529,11 @@ class ResNeXt101_32X8D_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 88791336,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
"metrics": {
"acc@1": 82.834,
"acc@5": 96.228,
"_metrics": {
"ImageNet-1K": {
"acc@1": 82.834,
"acc@5": 96.228,
}
},
"_docs": """
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
......@@ -528,9 +552,11 @@ class ResNeXt101_64X4D_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 83455272,
"recipe": "https://github.com/pytorch/vision/pull/5935",
"metrics": {
"acc@1": 83.246,
"acc@5": 96.454,
"_metrics": {
"ImageNet-1K": {
"acc@1": 83.246,
"acc@5": 96.454,
}
},
"_docs": """
These weights were trained from scratch by using TorchVision's `new training recipe
......@@ -549,9 +575,11 @@ class Wide_ResNet50_2_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 68883240,
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
"metrics": {
"acc@1": 78.468,
"acc@5": 94.086,
"_metrics": {
"ImageNet-1K": {
"acc@1": 78.468,
"acc@5": 94.086,
}
},
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
},
......@@ -563,9 +591,11 @@ class Wide_ResNet50_2_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 68883240,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
"metrics": {
"acc@1": 81.602,
"acc@5": 95.758,
"_metrics": {
"ImageNet-1K": {
"acc@1": 81.602,
"acc@5": 95.758,
}
},
"_docs": """
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
......@@ -584,9 +614,11 @@ class Wide_ResNet101_2_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 126886696,
"recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
"metrics": {
"acc@1": 78.848,
"acc@5": 94.284,
"_metrics": {
"ImageNet-1K": {
"acc@1": 78.848,
"acc@5": 94.284,
}
},
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
},
......@@ -598,9 +630,11 @@ class Wide_ResNet101_2_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 126886696,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
"metrics": {
"acc@1": 82.510,
"acc@5": 96.020,
"_metrics": {
"ImageNet-1K": {
"acc@1": 82.510,
"acc@5": 96.020,
}
},
"_docs": """
These weights improve upon the results of the original paper by using TorchVision's `new training recipe
......
......@@ -146,9 +146,11 @@ class DeepLabV3_ResNet50_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 42004074,
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet50",
"metrics": {
"miou": 66.4,
"pixel_acc": 92.4,
"_metrics": {
"COCO-val2017-VOC-labels": {
"miou": 66.4,
"pixel_acc": 92.4,
}
},
},
)
......@@ -163,9 +165,11 @@ class DeepLabV3_ResNet101_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 60996202,
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet101",
"metrics": {
"miou": 67.4,
"pixel_acc": 92.4,
"_metrics": {
"COCO-val2017-VOC-labels": {
"miou": 67.4,
"pixel_acc": 92.4,
}
},
},
)
......@@ -180,9 +184,11 @@ class DeepLabV3_MobileNet_V3_Large_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 11029328,
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_mobilenet_v3_large",
"metrics": {
"miou": 60.3,
"pixel_acc": 91.2,
"_metrics": {
"COCO-val2017-VOC-labels": {
"miou": 60.3,
"pixel_acc": 91.2,
}
},
},
)
......
......@@ -65,9 +65,11 @@ class FCN_ResNet50_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 35322218,
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#fcn_resnet50",
"metrics": {
"miou": 60.5,
"pixel_acc": 91.4,
"_metrics": {
"COCO-val2017-VOC-labels": {
"miou": 60.5,
"pixel_acc": 91.4,
}
},
},
)
......@@ -82,9 +84,11 @@ class FCN_ResNet101_Weights(WeightsEnum):
**_COMMON_META,
"num_params": 54314346,
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#deeplabv3_resnet101",
"metrics": {
"miou": 63.7,
"pixel_acc": 91.9,
"_metrics": {
"COCO-val2017-VOC-labels": {
"miou": 63.7,
"pixel_acc": 91.9,
}
},
},
)
......
......@@ -102,9 +102,11 @@ class LRASPP_MobileNet_V3_Large_Weights(WeightsEnum):
"categories": _VOC_CATEGORIES,
"min_size": (1, 1),
"recipe": "https://github.com/pytorch/vision/tree/main/references/segmentation#lraspp_mobilenet_v3_large",
"metrics": {
"miou": 57.9,
"pixel_acc": 91.2,
"_metrics": {
"COCO-val2017-VOC-labels": {
"miou": 57.9,
"pixel_acc": 91.2,
}
},
"_docs": """
These weights were trained on a subset of COCO, using only the 20 categories that are present in the
......
......@@ -198,9 +198,11 @@ class ShuffleNet_V2_X0_5_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 1366792,
"metrics": {
"acc@1": 60.552,
"acc@5": 81.746,
"_metrics": {
"ImageNet-1K": {
"acc@1": 60.552,
"acc@5": 81.746,
}
},
"_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""",
},
......@@ -216,9 +218,11 @@ class ShuffleNet_V2_X1_0_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 2278604,
"metrics": {
"acc@1": 69.362,
"acc@5": 88.316,
"_metrics": {
"ImageNet-1K": {
"acc@1": 69.362,
"acc@5": 88.316,
}
},
"_docs": """These weights were trained from scratch to reproduce closely the results of the paper.""",
},
......@@ -234,9 +238,11 @@ class ShuffleNet_V2_X1_5_Weights(WeightsEnum):
**_COMMON_META,
"recipe": "https://github.com/pytorch/vision/pull/5906",
"num_params": 3503624,
"metrics": {
"acc@1": 72.996,
"acc@5": 91.086,
"_metrics": {
"ImageNet-1K": {
"acc@1": 72.996,
"acc@5": 91.086,
}
},
"_docs": """
These weights were trained from scratch by using TorchVision's `new training recipe
......@@ -255,9 +261,11 @@ class ShuffleNet_V2_X2_0_Weights(WeightsEnum):
**_COMMON_META,
"recipe": "https://github.com/pytorch/vision/pull/5906",
"num_params": 7393996,
"metrics": {
"acc@1": 76.230,
"acc@5": 93.006,
"_metrics": {
"ImageNet-1K": {
"acc@1": 76.230,
"acc@5": 93.006,
}
},
"_docs": """
These weights were trained from scratch by using TorchVision's `new training recipe
......
......@@ -129,9 +129,11 @@ class SqueezeNet1_0_Weights(WeightsEnum):
**_COMMON_META,
"min_size": (21, 21),
"num_params": 1248424,
"metrics": {
"acc@1": 58.092,
"acc@5": 80.420,
"_metrics": {
"ImageNet-1K": {
"acc@1": 58.092,
"acc@5": 80.420,
}
},
},
)
......@@ -146,9 +148,11 @@ class SqueezeNet1_1_Weights(WeightsEnum):
**_COMMON_META,
"min_size": (17, 17),
"num_params": 1235496,
"metrics": {
"acc@1": 58.178,
"acc@5": 80.624,
"_metrics": {
"ImageNet-1K": {
"acc@1": 58.178,
"acc@5": 80.624,
}
},
},
)
......
......@@ -417,9 +417,11 @@ class Swin_T_Weights(WeightsEnum):
"num_params": 28288354,
"min_size": (224, 224),
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#swintransformer",
"metrics": {
"acc@1": 81.358,
"acc@5": 95.526,
"_metrics": {
"ImageNet-1K": {
"acc@1": 81.358,
"acc@5": 95.526,
}
},
"_docs": """These weights reproduce closely the results of the paper using its training recipe.""",
},
......
......@@ -121,9 +121,11 @@ class VGG11_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 132863336,
"metrics": {
"acc@1": 69.020,
"acc@5": 88.628,
"_metrics": {
"ImageNet-1K": {
"acc@1": 69.020,
"acc@5": 88.628,
}
},
},
)
......@@ -137,9 +139,11 @@ class VGG11_BN_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 132868840,
"metrics": {
"acc@1": 70.370,
"acc@5": 89.810,
"_metrics": {
"ImageNet-1K": {
"acc@1": 70.370,
"acc@5": 89.810,
}
},
},
)
......@@ -153,9 +157,11 @@ class VGG13_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 133047848,
"metrics": {
"acc@1": 69.928,
"acc@5": 89.246,
"_metrics": {
"ImageNet-1K": {
"acc@1": 69.928,
"acc@5": 89.246,
}
},
},
)
......@@ -169,9 +175,11 @@ class VGG13_BN_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 133053736,
"metrics": {
"acc@1": 71.586,
"acc@5": 90.374,
"_metrics": {
"ImageNet-1K": {
"acc@1": 71.586,
"acc@5": 90.374,
}
},
},
)
......@@ -185,9 +193,11 @@ class VGG16_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 138357544,
"metrics": {
"acc@1": 71.592,
"acc@5": 90.382,
"_metrics": {
"ImageNet-1K": {
"acc@1": 71.592,
"acc@5": 90.382,
}
},
},
)
......@@ -205,9 +215,11 @@ class VGG16_Weights(WeightsEnum):
"num_params": 138357544,
"categories": None,
"recipe": "https://github.com/amdegroot/ssd.pytorch#training-ssd",
"metrics": {
"acc@1": float("nan"),
"acc@5": float("nan"),
"_metrics": {
"ImageNet-1K": {
"acc@1": float("nan"),
"acc@5": float("nan"),
}
},
"_docs": """
These weights can't be used for classification because they are missing values in the `classifier`
......@@ -226,9 +238,11 @@ class VGG16_BN_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 138365992,
"metrics": {
"acc@1": 73.360,
"acc@5": 91.516,
"_metrics": {
"ImageNet-1K": {
"acc@1": 73.360,
"acc@5": 91.516,
}
},
},
)
......@@ -242,9 +256,11 @@ class VGG19_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 143667240,
"metrics": {
"acc@1": 72.376,
"acc@5": 90.876,
"_metrics": {
"ImageNet-1K": {
"acc@1": 72.376,
"acc@5": 90.876,
}
},
},
)
......@@ -258,9 +274,11 @@ class VGG19_BN_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 143678248,
"metrics": {
"acc@1": 74.218,
"acc@5": 91.842,
"_metrics": {
"ImageNet-1K": {
"acc@1": 74.218,
"acc@5": 91.842,
}
},
},
)
......
......@@ -323,9 +323,11 @@ class R3D_18_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 33371472,
"metrics": {
"acc@1": 52.75,
"acc@5": 75.45,
"_metrics": {
"Kinetics-400": {
"acc@1": 52.75,
"acc@5": 75.45,
}
},
},
)
......@@ -339,9 +341,11 @@ class MC3_18_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 11695440,
"metrics": {
"acc@1": 53.90,
"acc@5": 76.29,
"_metrics": {
"Kinetics-400": {
"acc@1": 53.90,
"acc@5": 76.29,
}
},
},
)
......@@ -355,9 +359,11 @@ class R2Plus1D_18_Weights(WeightsEnum):
meta={
**_COMMON_META,
"num_params": 31505325,
"metrics": {
"acc@1": 57.50,
"acc@5": 78.81,
"_metrics": {
"Kinetics-400": {
"acc@1": 57.50,
"acc@5": 78.81,
}
},
},
)
......
......@@ -328,9 +328,11 @@ class ViT_B_16_Weights(WeightsEnum):
"num_params": 86567656,
"min_size": (224, 224),
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_b_16",
"metrics": {
"acc@1": 81.072,
"acc@5": 95.318,
"_metrics": {
"ImageNet-1K": {
"acc@1": 81.072,
"acc@5": 95.318,
}
},
"_docs": """
These weights were trained from scratch by using a modified version of `DeIT
......@@ -350,9 +352,11 @@ class ViT_B_16_Weights(WeightsEnum):
**_COMMON_SWAG_META,
"num_params": 86859496,
"min_size": (384, 384),
"metrics": {
"acc@1": 85.304,
"acc@5": 97.650,
"_metrics": {
"ImageNet-1K": {
"acc@1": 85.304,
"acc@5": 97.650,
}
},
"_docs": """
These weights are learnt via transfer learning by end-to-end fine-tuning the original
......@@ -373,9 +377,11 @@ class ViT_B_16_Weights(WeightsEnum):
"recipe": "https://github.com/pytorch/vision/pull/5793",
"num_params": 86567656,
"min_size": (224, 224),
"metrics": {
"acc@1": 81.886,
"acc@5": 96.180,
"_metrics": {
"ImageNet-1K": {
"acc@1": 81.886,
"acc@5": 96.180,
}
},
"_docs": """
These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk
......@@ -395,9 +401,11 @@ class ViT_B_32_Weights(WeightsEnum):
"num_params": 88224232,
"min_size": (224, 224),
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_b_32",
"metrics": {
"acc@1": 75.912,
"acc@5": 92.466,
"_metrics": {
"ImageNet-1K": {
"acc@1": 75.912,
"acc@5": 92.466,
}
},
"_docs": """
These weights were trained from scratch by using a modified version of `DeIT
......@@ -417,9 +425,11 @@ class ViT_L_16_Weights(WeightsEnum):
"num_params": 304326632,
"min_size": (224, 224),
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_l_16",
"metrics": {
"acc@1": 79.662,
"acc@5": 94.638,
"_metrics": {
"ImageNet-1K": {
"acc@1": 79.662,
"acc@5": 94.638,
}
},
"_docs": """
These weights were trained from scratch by using a modified version of TorchVision's
......@@ -440,9 +450,11 @@ class ViT_L_16_Weights(WeightsEnum):
**_COMMON_SWAG_META,
"num_params": 305174504,
"min_size": (512, 512),
"metrics": {
"acc@1": 88.064,
"acc@5": 98.512,
"_metrics": {
"ImageNet-1K": {
"acc@1": 88.064,
"acc@5": 98.512,
}
},
"_docs": """
These weights are learnt via transfer learning by end-to-end fine-tuning the original
......@@ -463,9 +475,11 @@ class ViT_L_16_Weights(WeightsEnum):
"recipe": "https://github.com/pytorch/vision/pull/5793",
"num_params": 304326632,
"min_size": (224, 224),
"metrics": {
"acc@1": 85.146,
"acc@5": 97.422,
"_metrics": {
"ImageNet-1K": {
"acc@1": 85.146,
"acc@5": 97.422,
}
},
"_docs": """
These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk
......@@ -485,9 +499,11 @@ class ViT_L_32_Weights(WeightsEnum):
"num_params": 306535400,
"min_size": (224, 224),
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#vit_l_32",
"metrics": {
"acc@1": 76.972,
"acc@5": 93.07,
"_metrics": {
"ImageNet-1K": {
"acc@1": 76.972,
"acc@5": 93.07,
}
},
"_docs": """
These weights were trained from scratch by using a modified version of `DeIT
......@@ -511,9 +527,11 @@ class ViT_H_14_Weights(WeightsEnum):
**_COMMON_SWAG_META,
"num_params": 633470440,
"min_size": (518, 518),
"metrics": {
"acc@1": 88.552,
"acc@5": 98.694,
"_metrics": {
"ImageNet-1K": {
"acc@1": 88.552,
"acc@5": 98.694,
}
},
"_docs": """
These weights are learnt via transfer learning by end-to-end fine-tuning the original
......@@ -534,9 +552,11 @@ class ViT_H_14_Weights(WeightsEnum):
"recipe": "https://github.com/pytorch/vision/pull/5793",
"num_params": 632045800,
"min_size": (224, 224),
"metrics": {
"acc@1": 85.708,
"acc@5": 97.730,
"_metrics": {
"ImageNet-1K": {
"acc@1": 85.708,
"acc@5": 97.730,
}
},
"_docs": """
These weights are composed of the original frozen `SWAG <https://arxiv.org/abs/2201.08371>`_ trunk
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment