Commit 2eaeb2a8 authored by ekka's avatar ekka Committed by Francisco Massa
Browse files

Add references to VGG and Resnet variants (#1088)

* Add paper references to VGG

* Add paper references to ResNet and its variants
parent e8e9bdb6
...@@ -219,7 +219,8 @@ def _resnet(arch, block, layers, pretrained, progress, **kwargs): ...@@ -219,7 +219,8 @@ def _resnet(arch, block, layers, pretrained, progress, **kwargs):
def resnet18(pretrained=False, progress=True, **kwargs): def resnet18(pretrained=False, progress=True, **kwargs):
"""Constructs a ResNet-18 model. r"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -230,7 +231,8 @@ def resnet18(pretrained=False, progress=True, **kwargs): ...@@ -230,7 +231,8 @@ def resnet18(pretrained=False, progress=True, **kwargs):
def resnet34(pretrained=False, progress=True, **kwargs): def resnet34(pretrained=False, progress=True, **kwargs):
"""Constructs a ResNet-34 model. r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -241,7 +243,8 @@ def resnet34(pretrained=False, progress=True, **kwargs): ...@@ -241,7 +243,8 @@ def resnet34(pretrained=False, progress=True, **kwargs):
def resnet50(pretrained=False, progress=True, **kwargs): def resnet50(pretrained=False, progress=True, **kwargs):
"""Constructs a ResNet-50 model. r"""ResNet-50 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -252,7 +255,8 @@ def resnet50(pretrained=False, progress=True, **kwargs): ...@@ -252,7 +255,8 @@ def resnet50(pretrained=False, progress=True, **kwargs):
def resnet101(pretrained=False, progress=True, **kwargs): def resnet101(pretrained=False, progress=True, **kwargs):
"""Constructs a ResNet-101 model. r"""ResNet-101 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -263,7 +267,8 @@ def resnet101(pretrained=False, progress=True, **kwargs): ...@@ -263,7 +267,8 @@ def resnet101(pretrained=False, progress=True, **kwargs):
def resnet152(pretrained=False, progress=True, **kwargs): def resnet152(pretrained=False, progress=True, **kwargs):
"""Constructs a ResNet-152 model. r"""ResNet-152 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -274,7 +279,8 @@ def resnet152(pretrained=False, progress=True, **kwargs): ...@@ -274,7 +279,8 @@ def resnet152(pretrained=False, progress=True, **kwargs):
def resnext50_32x4d(pretrained=False, progress=True, **kwargs): def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
"""Constructs a ResNeXt-50 32x4d model. r"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -287,7 +293,8 @@ def resnext50_32x4d(pretrained=False, progress=True, **kwargs): ...@@ -287,7 +293,8 @@ def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
def resnext101_32x8d(pretrained=False, progress=True, **kwargs): def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
"""Constructs a ResNeXt-101 32x8d model. r"""ResNeXt-101 32x8d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -300,7 +307,8 @@ def resnext101_32x8d(pretrained=False, progress=True, **kwargs): ...@@ -300,7 +307,8 @@ def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
def wide_resnet50_2(pretrained=False, progress=True, **kwargs): def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
"""Constructs a Wide ResNet-50-2 model. r"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1 which is twice larger in every block. The number of channels in outer 1x1
...@@ -317,7 +325,8 @@ def wide_resnet50_2(pretrained=False, progress=True, **kwargs): ...@@ -317,7 +325,8 @@ def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
def wide_resnet101_2(pretrained=False, progress=True, **kwargs): def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
"""Constructs a Wide ResNet-101-2 model. r"""Wide ResNet-101-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1 which is twice larger in every block. The number of channels in outer 1x1
......
...@@ -95,7 +95,8 @@ def _vgg(arch, cfg, batch_norm, pretrained, progress, **kwargs): ...@@ -95,7 +95,8 @@ def _vgg(arch, cfg, batch_norm, pretrained, progress, **kwargs):
def vgg11(pretrained=False, progress=True, **kwargs): def vgg11(pretrained=False, progress=True, **kwargs):
"""VGG 11-layer model (configuration "A") r"""VGG 11-layer model (configuration "A") from
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -105,7 +106,8 @@ def vgg11(pretrained=False, progress=True, **kwargs): ...@@ -105,7 +106,8 @@ def vgg11(pretrained=False, progress=True, **kwargs):
def vgg11_bn(pretrained=False, progress=True, **kwargs): def vgg11_bn(pretrained=False, progress=True, **kwargs):
"""VGG 11-layer model (configuration "A") with batch normalization r"""VGG 11-layer model (configuration "A") with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -115,7 +117,8 @@ def vgg11_bn(pretrained=False, progress=True, **kwargs): ...@@ -115,7 +117,8 @@ def vgg11_bn(pretrained=False, progress=True, **kwargs):
def vgg13(pretrained=False, progress=True, **kwargs): def vgg13(pretrained=False, progress=True, **kwargs):
"""VGG 13-layer model (configuration "B") r"""VGG 13-layer model (configuration "B")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -125,7 +128,8 @@ def vgg13(pretrained=False, progress=True, **kwargs): ...@@ -125,7 +128,8 @@ def vgg13(pretrained=False, progress=True, **kwargs):
def vgg13_bn(pretrained=False, progress=True, **kwargs): def vgg13_bn(pretrained=False, progress=True, **kwargs):
"""VGG 13-layer model (configuration "B") with batch normalization r"""VGG 13-layer model (configuration "B") with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -135,7 +139,8 @@ def vgg13_bn(pretrained=False, progress=True, **kwargs): ...@@ -135,7 +139,8 @@ def vgg13_bn(pretrained=False, progress=True, **kwargs):
def vgg16(pretrained=False, progress=True, **kwargs): def vgg16(pretrained=False, progress=True, **kwargs):
"""VGG 16-layer model (configuration "D") r"""VGG 16-layer model (configuration "D")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -145,7 +150,8 @@ def vgg16(pretrained=False, progress=True, **kwargs): ...@@ -145,7 +150,8 @@ def vgg16(pretrained=False, progress=True, **kwargs):
def vgg16_bn(pretrained=False, progress=True, **kwargs): def vgg16_bn(pretrained=False, progress=True, **kwargs):
"""VGG 16-layer model (configuration "D") with batch normalization r"""VGG 16-layer model (configuration "D") with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -155,7 +161,8 @@ def vgg16_bn(pretrained=False, progress=True, **kwargs): ...@@ -155,7 +161,8 @@ def vgg16_bn(pretrained=False, progress=True, **kwargs):
def vgg19(pretrained=False, progress=True, **kwargs): def vgg19(pretrained=False, progress=True, **kwargs):
"""VGG 19-layer model (configuration "E") r"""VGG 19-layer model (configuration "E")
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
...@@ -165,7 +172,8 @@ def vgg19(pretrained=False, progress=True, **kwargs): ...@@ -165,7 +172,8 @@ def vgg19(pretrained=False, progress=True, **kwargs):
def vgg19_bn(pretrained=False, progress=True, **kwargs): def vgg19_bn(pretrained=False, progress=True, **kwargs):
"""VGG 19-layer model (configuration 'E') with batch normalization r"""VGG 19-layer model (configuration 'E') with batch normalization
`"Very Deep Convolutional Networks For Large-Scale Image Recognition" <https://arxiv.org/pdf/1409.1556.pdf>'_
Args: Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet pretrained (bool): If True, returns a model pre-trained on ImageNet
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment