Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
2a52c2dc
Unverified
Commit
2a52c2dc
authored
Jun 03, 2021
by
Shrill Shrestha
Committed by
GitHub
Jun 03, 2021
Browse files
Port test_randomness in test_transforms.py to pytest (#3955)
parent
f7b4cb04
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
30 additions
and
70 deletions
+30
-70
test/test_transforms.py
test/test_transforms.py
+30
-70
No files found.
test/test_transforms.py
View file @
2a52c2dc
...
@@ -1621,76 +1621,6 @@ class Tester(unittest.TestCase):
...
@@ -1621,76 +1621,6 @@ class Tester(unittest.TestCase):
with
self
.
assertRaisesRegex
(
ValueError
,
r
"sigma should be a single number or a list/tuple with length 2"
):
with
self
.
assertRaisesRegex
(
ValueError
,
r
"sigma should be a single number or a list/tuple with length 2"
):
transforms
.
GaussianBlur
(
3
,
"sigma_string"
)
transforms
.
GaussianBlur
(
3
,
"sigma_string"
)
def
_test_randomness
(
self
,
fn
,
trans
,
configs
):
random_state
=
random
.
getstate
()
random
.
seed
(
42
)
img
=
transforms
.
ToPILImage
()(
torch
.
rand
(
3
,
16
,
18
))
for
p
in
[
0.5
,
0.7
]:
for
config
in
configs
:
inv_img
=
fn
(
img
,
**
config
)
num_samples
=
250
counts
=
0
for
_
in
range
(
num_samples
):
tranformation
=
trans
(
p
=
p
,
**
config
)
tranformation
.
__repr__
()
out
=
tranformation
(
img
)
if
out
==
inv_img
:
counts
+=
1
p_value
=
stats
.
binom_test
(
counts
,
num_samples
,
p
=
p
)
random
.
setstate
(
random_state
)
self
.
assertGreater
(
p_value
,
0.0001
)
@
unittest
.
skipIf
(
stats
is
None
,
'scipy.stats not available'
)
def
test_random_invert
(
self
):
self
.
_test_randomness
(
F
.
invert
,
transforms
.
RandomInvert
,
[{}]
)
@
unittest
.
skipIf
(
stats
is
None
,
'scipy.stats not available'
)
def
test_random_posterize
(
self
):
self
.
_test_randomness
(
F
.
posterize
,
transforms
.
RandomPosterize
,
[{
"bits"
:
4
}]
)
@
unittest
.
skipIf
(
stats
is
None
,
'scipy.stats not available'
)
def
test_random_solarize
(
self
):
self
.
_test_randomness
(
F
.
solarize
,
transforms
.
RandomSolarize
,
[{
"threshold"
:
192
}]
)
@
unittest
.
skipIf
(
stats
is
None
,
'scipy.stats not available'
)
def
test_random_adjust_sharpness
(
self
):
self
.
_test_randomness
(
F
.
adjust_sharpness
,
transforms
.
RandomAdjustSharpness
,
[{
"sharpness_factor"
:
2.0
}]
)
@
unittest
.
skipIf
(
stats
is
None
,
'scipy.stats not available'
)
def
test_random_autocontrast
(
self
):
self
.
_test_randomness
(
F
.
autocontrast
,
transforms
.
RandomAutocontrast
,
[{}]
)
@
unittest
.
skipIf
(
stats
is
None
,
'scipy.stats not available'
)
def
test_random_equalize
(
self
):
self
.
_test_randomness
(
F
.
equalize
,
transforms
.
RandomEqualize
,
[{}]
)
def
test_autoaugment
(
self
):
def
test_autoaugment
(
self
):
for
policy
in
transforms
.
AutoAugmentPolicy
:
for
policy
in
transforms
.
AutoAugmentPolicy
:
for
fill
in
[
None
,
85
,
(
128
,
128
,
128
)]:
for
fill
in
[
None
,
85
,
(
128
,
128
,
128
)]:
...
@@ -1834,6 +1764,36 @@ class TestPad:
...
@@ -1834,6 +1764,36 @@ class TestPad:
assert_equal
(
padded_img
.
size
,
[
edge_size
+
2
*
pad
for
edge_size
in
img
.
size
],
check_stride
=
False
)
assert_equal
(
padded_img
.
size
,
[
edge_size
+
2
*
pad
for
edge_size
in
img
.
size
],
check_stride
=
False
)
@
pytest
.
mark
.
skipif
(
stats
is
None
,
reason
=
"scipy.stats not available"
)
@
pytest
.
mark
.
parametrize
(
'fn, trans, config'
,
[
(
F
.
invert
,
transforms
.
RandomInvert
,
{}),
(
F
.
posterize
,
transforms
.
RandomPosterize
,
{
"bits"
:
4
}),
(
F
.
solarize
,
transforms
.
RandomSolarize
,
{
"threshold"
:
192
}),
(
F
.
adjust_sharpness
,
transforms
.
RandomAdjustSharpness
,
{
"sharpness_factor"
:
2.0
}),
(
F
.
autocontrast
,
transforms
.
RandomAutocontrast
,
{}),
(
F
.
equalize
,
transforms
.
RandomEqualize
,
{})])
@
pytest
.
mark
.
parametrize
(
'p'
,
(.
5
,
.
7
))
def
test_randomness
(
fn
,
trans
,
config
,
p
):
random_state
=
random
.
getstate
()
random
.
seed
(
42
)
img
=
transforms
.
ToPILImage
()(
torch
.
rand
(
3
,
16
,
18
))
inv_img
=
fn
(
img
,
**
config
)
num_samples
=
250
counts
=
0
for
_
in
range
(
num_samples
):
tranformation
=
trans
(
p
=
p
,
**
config
)
tranformation
.
__repr__
()
out
=
tranformation
(
img
)
if
out
==
inv_img
:
counts
+=
1
p_value
=
stats
.
binom_test
(
counts
,
num_samples
,
p
=
p
)
random
.
setstate
(
random_state
)
assert
p_value
>
0.0001
def
test_adjust_brightness
():
def
test_adjust_brightness
():
x_shape
=
[
2
,
2
,
3
]
x_shape
=
[
2
,
2
,
3
]
x_data
=
[
0
,
5
,
13
,
54
,
135
,
226
,
37
,
8
,
234
,
90
,
255
,
1
]
x_data
=
[
0
,
5
,
13
,
54
,
135
,
226
,
37
,
8
,
234
,
90
,
255
,
1
]
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment