Unverified Commit 220126a4 authored by Thomas Grainger's avatar Thomas Grainger
Browse files

cleanup headings from pandoc

parent 15ce0363
...@@ -201,7 +201,7 @@ Transforms are common image transforms. They can be chained together ...@@ -201,7 +201,7 @@ Transforms are common image transforms. They can be chained together
using ``transforms.Compose`` using ``transforms.Compose``
``transforms.Compose`` ``transforms.Compose``
~~~~~~~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^^^^^
One can compose several transforms together. For example. One can compose several transforms together. For example.
...@@ -216,10 +216,10 @@ One can compose several transforms together. For example. ...@@ -216,10 +216,10 @@ One can compose several transforms together. For example.
]) ])
Transforms on PIL.Image Transforms on PIL.Image
----------------------- ~~~~~~~~~~~~~~~~~~~~~~~
``Scale(size, interpolation=Image.BILINEAR)`` ``Scale(size, interpolation=Image.BILINEAR)``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Rescales the input PIL.Image to the given 'size'. 'size' will be the Rescales the input PIL.Image to the given 'size'. 'size' will be the
size of the smaller edge. size of the smaller edge.
...@@ -229,14 +229,14 @@ height / width, size) - size: size of the smaller edge - interpolation: ...@@ -229,14 +229,14 @@ height / width, size) - size: size of the smaller edge - interpolation:
Default: PIL.Image.BILINEAR Default: PIL.Image.BILINEAR
``CenterCrop(size)`` - center-crops the image to the given size ``CenterCrop(size)`` - center-crops the image to the given size
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Crops the given PIL.Image at the center to have a region of the given Crops the given PIL.Image at the center to have a region of the given
size. size can be a tuple (target\_height, target\_width) or an integer, size. size can be a tuple (target\_height, target\_width) or an integer,
in which case the target will be of a square shape (size, size) in which case the target will be of a square shape (size, size)
``RandomCrop(size, padding=0)`` ``RandomCrop(size, padding=0)``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Crops the given PIL.Image at a random location to have a region of the Crops the given PIL.Image at a random location to have a region of the
given size. size can be a tuple (target\_height, target\_width) or an given size. size can be a tuple (target\_height, target\_width) or an
...@@ -245,13 +245,13 @@ If ``padding`` is non-zero, then the image is first zero-padded on each ...@@ -245,13 +245,13 @@ If ``padding`` is non-zero, then the image is first zero-padded on each
side with ``padding`` pixels. side with ``padding`` pixels.
``RandomHorizontalFlip()`` ``RandomHorizontalFlip()``
~~~~~~~~~~~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^^^^^^^^^
Randomly horizontally flips the given PIL.Image with a probability of Randomly horizontally flips the given PIL.Image with a probability of
0.5 0.5
``RandomSizedCrop(size, interpolation=Image.BILINEAR)`` ``RandomSizedCrop(size, interpolation=Image.BILINEAR)``
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the
original size and and a random aspect ratio of 3/4 to 4/3 of the original size and and a random aspect ratio of 3/4 to 4/3 of the
...@@ -261,23 +261,23 @@ This is popularly used to train the Inception networks - size: size of ...@@ -261,23 +261,23 @@ This is popularly used to train the Inception networks - size: size of
the smaller edge - interpolation: Default: PIL.Image.BILINEAR the smaller edge - interpolation: Default: PIL.Image.BILINEAR
``Pad(padding, fill=0)`` ``Pad(padding, fill=0)``
~~~~~~~~~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^^^^^^^
Pads the given image on each side with ``padding`` number of pixels, and Pads the given image on each side with ``padding`` number of pixels, and
the padding pixels are filled with pixel value ``fill``. If a ``5x5`` the padding pixels are filled with pixel value ``fill``. If a ``5x5``
image is padded with ``padding=1`` then it becomes ``7x7`` image is padded with ``padding=1`` then it becomes ``7x7``
Transforms on torch.\*Tensor Transforms on torch.\*Tensor
---------------------------- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
``Normalize(mean, std)`` ``Normalize(mean, std)``
~~~~~~~~~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^^^^^^^
Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of Given mean: (R, G, B) and std: (R, G, B), will normalize each channel of
the torch.\*Tensor, i.e. channel = (channel - mean) / std the torch.\*Tensor, i.e. channel = (channel - mean) / std
Conversion Transforms Conversion Transforms
--------------------- ~~~~~~~~~~~~~~~~~~~~~
- ``ToTensor()`` - Converts a PIL.Image (RGB) or numpy.ndarray (H x W x - ``ToTensor()`` - Converts a PIL.Image (RGB) or numpy.ndarray (H x W x
C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W)
...@@ -287,10 +287,10 @@ Conversion Transforms ...@@ -287,10 +287,10 @@ Conversion Transforms
shape H x W x C to a PIL.Image of range [0, 255] shape H x W x C to a PIL.Image of range [0, 255]
Generic Transofrms Generic Transofrms
------------------ ~~~~~~~~~~~~~~~~~~
``Lambda(lambda)`` ``Lambda(lambda)``
~~~~~~~~~~~~~~~~~~ ^^^^^^^^^^^^^^^^^^
Given a Python lambda, applies it to the input ``img`` and returns it. Given a Python lambda, applies it to the input ``img`` and returns it.
For example: For example:
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment