''' Copyright (c) 2024 Beijing Volcano Engine Technology Ltd. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import os import tempfile from unittest import TestCase import torch import veturboio class TestConvertUtil(TestCase): def test_convert(self): with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "model.pt") torch.save(self.tensors, filepath) convertpath = os.path.join(tmpdirname, "model.safetensors") print(f"python -m veturboio.convert -i {filepath} -o {convertpath}") os.system(f"python -m veturboio.convert -i {filepath} -o {convertpath}") loaded_tensors = veturboio.load(convertpath) for key in self.tensors.keys(): self.assertTrue(torch.allclose(self.tensors[key], loaded_tensors[key])) @classmethod def setUpClass(cls): cls.tensors = { "weight1": torch.randn(20, 10), "weight2": torch.randn(20, 10), }