#!/usr/bin/env python3 # Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import os import sys import time import torch import torchaudio import sentencepiece as spm from fairseq import tasks from fairseq.utils import load_ensemble_for_inference, import_user_module from interactive_asr.vad import get_microphone_chunks def add_asr_eval_argument(parser): parser.add_argument("--input_file", help="input file") parser.add_argument("--ctc", action="store_true", help="decode a ctc model") parser.add_argument("--rnnt", default=False, help="decode a rnnt model") parser.add_argument("--kspmodel", default=None, help="sentence piece model") parser.add_argument( "--wfstlm", default=None, help="wfstlm on dictonary output units" ) parser.add_argument( "--rnnt_decoding_type", default="greedy", help="wfstlm on dictonary output units", ) parser.add_argument( "--lm_weight", default=0.2, help="weight for wfstlm while interpolating with neural score", ) parser.add_argument( "--rnnt_len_penalty", default=-0.5, help="rnnt length penalty on word level" ) return parser def check_args(args): assert args.path is not None, "--path required for generation!" assert ( not args.sampling or args.nbest == args.beam ), "--sampling requires --nbest to be equal to --beam" assert ( args.replace_unk is None or args.raw_text ), "--replace-unk requires a raw text dataset (--raw-text)" def process_predictions(args, hypos, sp, tgt_dict): res = [] for hypo in hypos[: min(len(hypos), args.nbest)]: hyp_pieces = tgt_dict.string(hypo["tokens"].int().cpu()) hyp_words = sp.DecodePieces(hyp_pieces.split()) res.append(hyp_words) return res def optimize_models(args, use_cuda, models): """Optimize ensemble for generation """ for model in models: model.make_generation_fast_( beamable_mm_beam_size=None if args.no_beamable_mm else args.beam, need_attn=args.print_alignment, ) if args.fp16: model.half() if use_cuda: model.cuda() def calc_mean_invstddev(feature): if len(feature.shape) != 2: raise ValueError("We expect the input feature to be 2-D tensor") mean = torch.mean(feature, dim=0) var = torch.var(feature, dim=0) # avoid division by ~zero if (var < sys.float_info.epsilon).any(): return mean, 1.0 / (torch.sqrt(var) + sys.float_info.epsilon) return mean, 1.0 / torch.sqrt(var) def calcMN(features): mean, invstddev = calc_mean_invstddev(features) res = (features - mean) * invstddev return res def transcribe(waveform, args, task, generator, models, sp, tgt_dict): num_features = 80 output = torchaudio.compliance.kaldi.fbank(waveform, num_mel_bins=num_features) output_cmvn = calcMN(output.cpu().detach()) # size (m, n) source = output_cmvn frames_lengths = torch.LongTensor([source.size(0)]) # size (1, m, n). In general, if source is (x, m, n), then hypos is (x, ...) source.unsqueeze_(0) sample = {"net_input": {"src_tokens": source, "src_lengths": frames_lengths}} hypos = task.inference_step(generator, models, sample) assert len(hypos) == 1 transcription = [] for i in range(len(hypos)): # Process top predictions hyp_words = process_predictions(args, hypos[i], sp, tgt_dict) transcription.append(hyp_words) return transcription def setup_asr(args, logger): check_args(args) import_user_module(args) if args.max_tokens is None and args.max_sentences is None: args.max_tokens = 30000 logger.info(args) use_cuda = torch.cuda.is_available() and not args.cpu # Load dataset splits task = tasks.setup_task(args) # Set dictionary tgt_dict = task.target_dictionary if args.ctc or args.rnnt: tgt_dict.add_symbol("") if args.ctc: logger.info("| decoding a ctc model") if args.rnnt: logger.info("| decoding a rnnt model") # Load ensemble logger.info("| loading model(s) from {}".format(args.path)) models, _model_args = load_ensemble_for_inference( args.path.split(":"), task, model_arg_overrides=eval(args.model_overrides), # noqa ) optimize_models(args, use_cuda, models) # Initialize generator generator = task.build_generator(args) sp = spm.SentencePieceProcessor() sp.Load(os.path.join(args.data, "spm.model")) return task, generator, models, sp, tgt_dict def transcribe_file(args, task, generator, models, sp, tgt_dict): path = args.input_file if not os.path.exists(path): raise FileNotFoundError("Audio file not found: {}".format(path)) waveform, sample_rate = torchaudio.load_wav(path) waveform = waveform.mean(0, True) waveform = torchaudio.transforms.Resample( orig_freq=sample_rate, new_freq=16000 )(waveform) start = time.time() transcription = transcribe( waveform, args, task, generator, models, sp, tgt_dict ) transcription_time = time.time() - start return transcription_time, transcription def get_microphone_transcription(args, task, generator, models, sp, tgt_dict): for (waveform, sample_rate) in get_microphone_chunks(): waveform = torchaudio.transforms.Resample( orig_freq=sample_rate, new_freq=16000 )(waveform.reshape(1, -1)) transcription = transcribe( waveform, args, task, generator, models, sp, tgt_dict ) yield transcription