# -*- coding: utf-8 -*- """ Audio Datasets ============== ``torchaudio`` provides easy access to common, publicly accessible datasets. Please refer to the official documentation for the list of available datasets. """ # When running this tutorial in Google Colab, install the required packages # with the following. # !pip install torchaudio import torch import torchaudio print(torch.__version__) print(torchaudio.__version__) ###################################################################### # Preparing data and utility functions (skip this section) # -------------------------------------------------------- # # @title Prepare data and utility functions. {display-mode: "form"} # @markdown # @markdown You do not need to look into this cell. # @markdown Just execute once and you are good to go. # ------------------------------------------------------------------------------- # Preparation of data and helper functions. # ------------------------------------------------------------------------------- import multiprocessing import os import matplotlib.pyplot as plt from IPython.display import Audio, display _SAMPLE_DIR = "_assets" YESNO_DATASET_PATH = os.path.join(_SAMPLE_DIR, "yes_no") os.makedirs(YESNO_DATASET_PATH, exist_ok=True) def _download_yesno(): if os.path.exists(os.path.join(YESNO_DATASET_PATH, "waves_yesno.tar.gz")): return torchaudio.datasets.YESNO(root=YESNO_DATASET_PATH, download=True) YESNO_DOWNLOAD_PROCESS = multiprocessing.Process(target=_download_yesno) YESNO_DOWNLOAD_PROCESS.start() def plot_specgram(waveform, sample_rate, title="Spectrogram", xlim=None): waveform = waveform.numpy() num_channels, num_frames = waveform.shape figure, axes = plt.subplots(num_channels, 1) if num_channels == 1: axes = [axes] for c in range(num_channels): axes[c].specgram(waveform[c], Fs=sample_rate) if num_channels > 1: axes[c].set_ylabel(f"Channel {c+1}") if xlim: axes[c].set_xlim(xlim) figure.suptitle(title) plt.show(block=False) def play_audio(waveform, sample_rate): waveform = waveform.numpy() num_channels, num_frames = waveform.shape if num_channels == 1: display(Audio(waveform[0], rate=sample_rate)) elif num_channels == 2: display(Audio((waveform[0], waveform[1]), rate=sample_rate)) else: raise ValueError("Waveform with more than 2 channels are not supported.") ###################################################################### # Here, we show how to use the # :py:func:`torchaudio.datasets.YESNO` dataset. # YESNO_DOWNLOAD_PROCESS.join() dataset = torchaudio.datasets.YESNO(YESNO_DATASET_PATH, download=True) for i in [1, 3, 5]: waveform, sample_rate, label = dataset[i] plot_specgram(waveform, sample_rate, title=f"Sample {i}: {label}") play_audio(waveform, sample_rate)