import os from pathlib import Path from torchaudio.datasets import speechcommands from torchaudio_unittest.common_utils import ( get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase, ) _LABELS = [ "bed", "bird", "cat", "dog", "down", "eight", "five", "follow", "forward", "four", "go", "happy", "house", "learn", "left", "marvin", "nine", "no", "off", "on", "one", "right", "seven", "sheila", "six", "stop", "three", "tree", "two", "up", "visual", "wow", "yes", "zero", ] def get_mock_dataset(dataset_dir): """ dataset_dir: directory to the mocked dataset """ mocked_samples = [] mocked_train_samples = [] mocked_valid_samples = [] mocked_test_samples = [] os.makedirs(dataset_dir, exist_ok=True) sample_rate = 16000 # 16kHz sample rate seed = 0 valid_file = os.path.join(dataset_dir, "validation_list.txt") test_file = os.path.join(dataset_dir, "testing_list.txt") with open(valid_file, "w") as valid, open(test_file, "w") as test: for label in _LABELS: path = os.path.join(dataset_dir, label) os.makedirs(path, exist_ok=True) for j in range(6): # generate hash ID for speaker speaker = "{:08x}".format(j) for utterance in range(3): filename = f"{speaker}{speechcommands.HASH_DIVIDER}{utterance}.wav" file_path = os.path.join(path, filename) seed += 1 data = get_whitenoise( sample_rate=sample_rate, duration=0.01, n_channels=1, dtype="int16", seed=seed, ) save_wav(file_path, data, sample_rate) sample = ( normalize_wav(data), sample_rate, label, speaker, utterance, ) mocked_samples.append(sample) if j < 2: mocked_train_samples.append(sample) elif j < 4: valid.write(f"{label}/{filename}\n") mocked_valid_samples.append(sample) elif j < 6: test.write(f"{label}/{filename}\n") mocked_test_samples.append(sample) return mocked_samples, mocked_train_samples, mocked_valid_samples, mocked_test_samples class TestSpeechCommands(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None samples = [] train_samples = [] valid_samples = [] test_samples = [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() dataset_dir = os.path.join(cls.root_dir, speechcommands.FOLDER_IN_ARCHIVE, speechcommands.URL) cls.samples, cls.train_samples, cls.valid_samples, cls.test_samples = get_mock_dataset(dataset_dir) def _testSpeechCommands(self, dataset, data_samples): num_samples = 0 for i, (data, sample_rate, label, speaker_id, utterance_number) in enumerate(dataset): self.assertEqual(data, data_samples[i][0], atol=5e-5, rtol=1e-8) assert sample_rate == data_samples[i][1] assert label == data_samples[i][2] assert speaker_id == data_samples[i][3] assert utterance_number == data_samples[i][4] num_samples += 1 assert num_samples == len(data_samples) def testSpeechCommands_str(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir) self._testSpeechCommands(dataset, self.samples) def testSpeechCommands_path(self): dataset = speechcommands.SPEECHCOMMANDS(Path(self.root_dir)) self._testSpeechCommands(dataset, self.samples) def testSpeechCommandsSubsetTrain(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training") self._testSpeechCommands(dataset, self.train_samples) def testSpeechCommandsSubsetValid(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation") self._testSpeechCommands(dataset, self.valid_samples) def testSpeechCommandsSubsetTest(self): dataset = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing") self._testSpeechCommands(dataset, self.test_samples) def testSpeechCommandsSum(self): dataset_all = speechcommands.SPEECHCOMMANDS(self.root_dir) dataset_train = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="training") dataset_valid = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="validation") dataset_test = speechcommands.SPEECHCOMMANDS(self.root_dir, subset="testing") assert len(dataset_train) + len(dataset_valid) + len(dataset_test) == len(dataset_all)