import os from pathlib import Path from torchaudio.datasets.libritts import LIBRITTS from torchaudio_unittest.common_utils import ( get_whitenoise, normalize_wav, save_wav, TempDirMixin, TorchaudioTestCase, ) _UTTERANCE_IDS = [ [19, 198, "000000", "000000"], [26, 495, "000004", "000000"], ] _ORIGINAL_TEXT = "this is the original text." _NORMALIZED_TEXT = "this is the normalized text." def get_mock_dataset(root_dir): """ root_dir: directory to the mocked dataset """ mocked_data = [] base_dir = os.path.join(root_dir, "LibriTTS", "train-clean-100") for i, utterance_id in enumerate(_UTTERANCE_IDS): filename = f'{"_".join(str(u) for u in utterance_id)}.wav' file_dir = os.path.join(base_dir, str(utterance_id[0]), str(utterance_id[1])) os.makedirs(file_dir, exist_ok=True) path = os.path.join(file_dir, filename) data = get_whitenoise(sample_rate=24000, duration=2, n_channels=1, dtype="int16", seed=i) save_wav(path, data, 24000) mocked_data.append(normalize_wav(data)) original_text_filename = f'{"_".join(str(u) for u in utterance_id)}.original.txt' path_original = os.path.join(file_dir, original_text_filename) with open(path_original, "w") as file_: file_.write(_ORIGINAL_TEXT) normalized_text_filename = f'{"_".join(str(u) for u in utterance_id)}.normalized.txt' path_normalized = os.path.join(file_dir, normalized_text_filename) with open(path_normalized, "w") as file_: file_.write(_NORMALIZED_TEXT) return mocked_data, _UTTERANCE_IDS, _ORIGINAL_TEXT, _NORMALIZED_TEXT class TestLibriTTS(TempDirMixin, TorchaudioTestCase): backend = "default" root_dir = None data = [] _utterance_ids, _original_text, _normalized_text = [], [], [] @classmethod def setUpClass(cls): cls.root_dir = cls.get_base_temp_dir() cls.data, cls._utterance_ids, cls._original_text, cls._normalized_text = get_mock_dataset(cls.root_dir) def _test_libritts(self, dataset): n_ites = 0 for i, ( waveform, sample_rate, original_text, normalized_text, speaker_id, chapter_id, utterance_id, ) in enumerate(dataset): expected_ids = self._utterance_ids[i] expected_data = self.data[i] self.assertEqual(expected_data, waveform, atol=5e-5, rtol=1e-8) assert sample_rate == 24000 assert speaker_id == expected_ids[0] assert chapter_id == expected_ids[1] assert original_text == self._original_text assert normalized_text == self._normalized_text assert utterance_id == f'{"_".join(str(u) for u in expected_ids[-4:])}' n_ites += 1 assert n_ites == len(self._utterance_ids) def test_libritts_str(self): dataset = LIBRITTS(self.root_dir) self._test_libritts(dataset) def test_libritts_path(self): dataset = LIBRITTS(Path(self.root_dir)) self._test_libritts(dataset)