import os.path from typing import Union import torch _TEST_DIR_PATH = os.path.realpath( os.path.join(os.path.dirname(__file__), '..')) def get_asset_path(*paths): """Return full path of a test asset""" return os.path.join(_TEST_DIR_PATH, 'assets', *paths) def get_whitenoise( *, sample_rate: int = 16000, duration: float = 1, # seconds n_channels: int = 1, seed: int = 0, dtype: Union[str, torch.dtype] = "float32", device: Union[str, torch.device] = "cpu", ): """Generate pseudo audio data with whitenoise Args: sample_rate: Sampling rate duration: Length of the resulting Tensor in seconds. n_channels: Number of channels seed: Seed value used for random number generation. Note that this function does not modify global random generator state. dtype: Torch dtype device: device Returns: Tensor: shape of (n_channels, sample_rate * duration) """ if isinstance(dtype, str): dtype = getattr(torch, dtype) shape = [n_channels, sample_rate * duration] # According to the doc, folking rng on all CUDA devices is slow when there are many CUDA devices, # so we only folk on CPU, generate values and move the data to the given device with torch.random.fork_rng([]): torch.random.manual_seed(seed) tensor = torch.randn(shape, dtype=dtype, device='cpu') tensor /= 2.0 tensor.clamp_(-1.0, 1.0) return tensor.to(device=device) def get_sinusoid( *, frequency: float = 300, sample_rate: int = 16000, duration: float = 1, # seconds n_channels: int = 1, dtype: Union[str, torch.dtype] = "float32", device: Union[str, torch.device] = "cpu", ): """Generate pseudo audio data with sine wave. Args: frequency: Frequency of sine wave sample_rate: Sampling rate duration: Length of the resulting Tensor in seconds. n_channels: Number of channels dtype: Torch dtype device: device Returns: Tensor: shape of (n_channels, sample_rate * duration) """ if isinstance(dtype, str): dtype = getattr(torch, dtype) pie2 = 2 * 3.141592653589793 end = pie2 * frequency * duration theta = torch.linspace(0, end, sample_rate * duration, dtype=dtype, device=device) return torch.sin(theta, out=None).repeat([n_channels, 1])