import torch.nn as nn def conv3x3(in_planes, out_planes, stride=1): """conv3x3. :param in_planes: int, number of channels in the input sequence. :param out_planes: int, number of channels produced by the convolution. :param stride: int, size of the convolving kernel. """ return nn.Conv1d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False, ) def downsample_basic_block(inplanes, outplanes, stride): """downsample_basic_block. :param inplanes: int, number of channels in the input sequence. :param outplanes: int, number of channels produced by the convolution. :param stride: int, size of the convolving kernel. """ return nn.Sequential( nn.Conv1d( inplanes, outplanes, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm1d(outplanes), ) class BasicBlock1D(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, relu_type="relu", ): """__init__. :param inplanes: int, number of channels in the input sequence. :param planes: int, number of channels produced by the convolution. :param stride: int, size of the convolving kernel. :param downsample: boolean, if True, the temporal resolution is downsampled. :param relu_type: str, type of activation function. """ super(BasicBlock1D, self).__init__() assert relu_type in ["relu", "prelu", "swish"] self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm1d(planes) # type of ReLU is an input option if relu_type == "relu": self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) elif relu_type == "prelu": self.relu1 = nn.PReLU(num_parameters=planes) self.relu2 = nn.PReLU(num_parameters=planes) elif relu_type == "swish": self.relu1 = nn.SiLU(inplace=True) self.relu2 = nn.SiLU(inplace=True) else: raise NotImplementedError # -------- self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm1d(planes) self.downsample = downsample self.stride = stride def forward(self, x): """forward. :param x: torch.Tensor, input tensor with input size (B, C, T) """ residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu2(out) return out class ResNet1D(nn.Module): def __init__( self, block, layers, relu_type="swish", a_upsample_ratio=1, ): """__init__. :param block: torch.nn.Module, class of blocks. :param layers: List, customised layers in each block. :param relu_type: str, type of activation function. :param a_upsample_ratio: int, The ratio related to the \ temporal resolution of output features of the frontend. \ a_upsample_ratio=1 produce features with a fps of 25. """ super(ResNet1D, self).__init__() self.inplanes = 64 self.relu_type = relu_type self.downsample_block = downsample_basic_block self.a_upsample_ratio = a_upsample_ratio self.conv1 = nn.Conv1d( in_channels=1, out_channels=self.inplanes, kernel_size=80, stride=4, padding=38, bias=False, ) self.bn1 = nn.BatchNorm1d(self.inplanes) if relu_type == "relu": self.relu = nn.ReLU(inplace=True) elif relu_type == "prelu": self.relu = nn.PReLU(num_parameters=self.inplanes) elif relu_type == "swish": self.relu = nn.SiLU(inplace=True) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool1d( kernel_size=20 // self.a_upsample_ratio, stride=20 // self.a_upsample_ratio, ) def _make_layer(self, block, planes, blocks, stride=1): """_make_layer. :param block: torch.nn.Module, class of blocks. :param planes: int, number of channels produced by the convolution. :param blocks: int, number of layers in a block. :param stride: int, size of the convolving kernel. """ downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = self.downsample_block( inplanes=self.inplanes, outplanes=planes * block.expansion, stride=stride, ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, relu_type=self.relu_type, ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, relu_type=self.relu_type, ) ) return nn.Sequential(*layers) def forward(self, x): """forward. :param x: torch.Tensor, input tensor with input size (B, C, T) """ x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) return x class Conv1dResNet(nn.Module): """Conv1dResNet""" def __init__(self, relu_type="swish", a_upsample_ratio=1): """__init__. :param relu_type: str, Activation function used in an audio front-end. :param a_upsample_ratio: int, The ratio related to the \ temporal resolution of output features of the frontend. \ a_upsample_ratio=1 produce features with a fps of 25. """ super(Conv1dResNet, self).__init__() self.a_upsample_ratio = a_upsample_ratio self.trunk = ResNet1D(BasicBlock1D, [2, 2, 2, 2], relu_type=relu_type, a_upsample_ratio=a_upsample_ratio) def forward(self, xs_pad): """forward. :param xs_pad: torch.Tensor, batch of padded input sequences (B, Tmax, idim) """ B, T, C = xs_pad.size() xs_pad = xs_pad[:, : T // 640 * 640, :] xs_pad = xs_pad.transpose(1, 2) xs_pad = self.trunk(xs_pad) # -- from B x C x T to B x T x C xs_pad = xs_pad.transpose(1, 2) return xs_pad def audio_resnet(): return Conv1dResNet()