import torch.nn as nn def conv3x3(in_planes, out_planes, stride=1): """conv3x3. :param in_planes: int, number of channels in the input sequence. :param out_planes: int, number of channels produced by the convolution. :param stride: int, size of the convolving kernel. """ return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False, ) def downsample_basic_block(inplanes, outplanes, stride): """downsample_basic_block. :param inplanes: int, number of channels in the input sequence. :param outplanes: int, number of channels produced by the convolution. :param stride: int, size of the convolving kernel. """ return nn.Sequential( nn.Conv2d( inplanes, outplanes, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(outplanes), ) class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, relu_type="swish", ): """__init__. :param inplanes: int, number of channels in the input sequence. :param planes: int, number of channels produced by the convolution. :param stride: int, size of the convolving kernel. :param downsample: boolean, if True, the temporal resolution is downsampled. :param relu_type: str, type of activation function. """ super(BasicBlock, self).__init__() assert relu_type in ["relu", "prelu", "swish"] self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) if relu_type == "relu": self.relu1 = nn.ReLU(inplace=True) self.relu2 = nn.ReLU(inplace=True) elif relu_type == "prelu": self.relu1 = nn.PReLU(num_parameters=planes) self.relu2 = nn.PReLU(num_parameters=planes) elif relu_type == "swish": self.relu1 = nn.SiLU(inplace=True) self.relu2 = nn.SiLU(inplace=True) else: raise NotImplementedError # -------- self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): """forward. :param x: torch.Tensor, input tensor with input size (B, C, T, H, W). """ residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu2(out) return out class ResNet(nn.Module): def __init__( self, block, layers, relu_type="swish", ): super(ResNet, self).__init__() self.inplanes = 64 self.relu_type = relu_type self.downsample_block = downsample_basic_block self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AdaptiveAvgPool2d(1) def _make_layer(self, block, planes, blocks, stride=1): """_make_layer. :param block: torch.nn.Module, class of blocks. :param planes: int, number of channels produced by the convolution. :param blocks: int, number of layers in a block. :param stride: int, size of the convolving kernel. """ downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = self.downsample_block( inplanes=self.inplanes, outplanes=planes * block.expansion, stride=stride, ) layers = [] layers.append( block( self.inplanes, planes, stride, downsample, relu_type=self.relu_type, ) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append( block( self.inplanes, planes, relu_type=self.relu_type, ) ) return nn.Sequential(*layers) def forward(self, x): """forward. :param x: torch.Tensor, input tensor with input size (B, C, T, H, W). """ x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) return x # -- auxiliary functions def threeD_to_2D_tensor(x): n_batch, n_channels, s_time, sx, sy = x.shape x = x.transpose(1, 2) return x.reshape(n_batch * s_time, n_channels, sx, sy) class Conv3dResNet(nn.Module): """Conv3dResNet module""" def __init__(self, backbone_type="resnet", relu_type="swish"): """__init__. :param backbone_type: str, the type of a visual front-end. :param relu_type: str, activation function used in an audio front-end. """ super(Conv3dResNet, self).__init__() self.backbone_type = backbone_type self.frontend_nout = 64 self.trunk = ResNet( BasicBlock, [2, 2, 2, 2], relu_type=relu_type, ) # -- frontend3D if relu_type == "relu": frontend_relu = nn.ReLU(True) elif relu_type == "prelu": frontend_relu = nn.PReLU(self.frontend_nout) elif relu_type == "swish": frontend_relu = nn.SiLU(inplace=True) self.frontend3D = nn.Sequential( nn.Conv3d( in_channels=1, out_channels=self.frontend_nout, kernel_size=(5, 7, 7), stride=(1, 2, 2), padding=(2, 3, 3), bias=False, ), nn.BatchNorm3d(self.frontend_nout), frontend_relu, nn.MaxPool3d( kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1), ), ) def forward(self, xs_pad): """forward. :param xs_pad: torch.Tensor, batch of padded input sequences. """ # -- include Channel dimension xs_pad = xs_pad.transpose(2, 1) B, C, T, H, W = xs_pad.size() xs_pad = self.frontend3D(xs_pad) Tnew = xs_pad.shape[2] # outpu should be B x C2 x Tnew x H x W xs_pad = threeD_to_2D_tensor(xs_pad) xs_pad = self.trunk(xs_pad) xs_pad = xs_pad.view(B, Tnew, xs_pad.size(1)) return xs_pad def video_resnet(): return Conv3dResNet()