import os.path from typing import Union import torch _TEST_DIR_PATH = os.path.realpath( os.path.join(os.path.dirname(__file__), '..')) def get_asset_path(*paths): """Return full path of a test asset""" return os.path.join(_TEST_DIR_PATH, 'assets', *paths) def get_whitenoise( *, sample_rate: int = 16000, duration: float = 1, # seconds n_channels: int = 1, seed: int = 0, dtype: Union[str, torch.dtype] = "float32", device: Union[str, torch.device] = "cpu", channels_first=True, scale_factor: float = 1, ): """Generate pseudo audio data with whitenoise Args: sample_rate: Sampling rate duration: Length of the resulting Tensor in seconds. n_channels: Number of channels seed: Seed value used for random number generation. Note that this function does not modify global random generator state. dtype: Torch dtype device: device channels_first: whether first dimension is n_channels scale_factor: scale the Tensor before clamping and quantization Returns: Tensor: shape of (n_channels, sample_rate * duration) """ if isinstance(dtype, str): dtype = getattr(torch, dtype) if dtype not in [torch.float32, torch.int32, torch.int16, torch.uint8]: raise NotImplementedError(f'dtype {dtype} is not supported.') # According to the doc, folking rng on all CUDA devices is slow when there are many CUDA devices, # so we only folk on CPU, generate values and move the data to the given device with torch.random.fork_rng([]): torch.random.manual_seed(seed) tensor = torch.randn([sample_rate * duration], dtype=torch.float32, device='cpu') tensor /= 2.0 tensor *= scale_factor tensor.clamp_(-1.0, 1.0) if dtype == torch.int32: tensor *= (tensor > 0) * 2147483647 + (tensor < 0) * 2147483648 if dtype == torch.int16: tensor *= (tensor > 0) * 32767 + (tensor < 0) * 32768 if dtype == torch.uint8: tensor *= (tensor > 0) * 127 + (tensor < 0) * 128 tensor += 128 tensor = tensor.to(dtype) tensor = tensor.repeat([n_channels, 1]) if not channels_first: tensor = tensor.t() return tensor.to(device=device) def get_sinusoid( *, frequency: float = 300, sample_rate: int = 16000, duration: float = 1, # seconds n_channels: int = 1, dtype: Union[str, torch.dtype] = "float32", device: Union[str, torch.device] = "cpu", channels_first: bool = True, ): """Generate pseudo audio data with sine wave. Args: frequency: Frequency of sine wave sample_rate: Sampling rate duration: Length of the resulting Tensor in seconds. n_channels: Number of channels dtype: Torch dtype device: device Returns: Tensor: shape of (n_channels, sample_rate * duration) """ if isinstance(dtype, str): dtype = getattr(torch, dtype) pie2 = 2 * 3.141592653589793 end = pie2 * frequency * duration theta = torch.linspace(0, end, sample_rate * duration, dtype=dtype, device=device) sin = torch.sin(theta, out=None).repeat([n_channels, 1]) if not channels_first: sin = sin.t() return sin