# Conv-TasNet This is a reference implementation of Conv-TasNet. > Luo, Yi, and Nima Mesgarani. "Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation." IEEE/ACM Transactions on Audio, Speech, and Language Processing 27.8 (2019): 1256-1266. Crossref. Web. This implementation is based on [arXiv:1809.07454v3](https://arxiv.org/abs/1809.07454v3) and [the reference implementation](https://github.com/naplab/Conv-TasNet) provided by the authors. For the usage, please checkout the [source separation README](../README.md). ## (Default) Training Configurations The default training/model configurations follow the best non-causal implementation from the paper. (causal configuration is not implemented.) - Sample rate: 8000 Hz - Batch size: total 16 over distributed training workers - Epochs: 100 - Initial learning rate: 1e-3 - Gradient clipping: maximum L2 norm of 5.0 - Optimizer: Adam - Learning rate scheduling: Halved after 3 epochs of no improvement in validation accuracy. - Objective function: SI-SNRi - Reported metrics: SI-SNRi, SDRi - Sample audio length: 4 seconds (randomized position) - Encoder/Decoder feature dimension (N): 512 - Encoder/Decoder convolution kernel size (L): 16 - TCN bottleneck/output feature dimension (B): 128 - TCN hidden feature dimension (H): 512 - TCN skip connection feature dimension (Sc): 128 - TCN convolution kernel size (P): 3 - The number of TCN convolution block layers (X): 8 - The number of TCN convolution blocks (R): 3 ## Evaluation The following is the evaluation result of training the model on WSJ0-2mix and WSJ0-3mix datasets. ### wsj0-mix 2speakers | | SI-SNRi (dB) | SDRi (dB) | Epoch | |:------------------:|-------------:|----------:|------:| | Reference | 15.3 | 15.6 | | | Validation dataset | 13.1 | 13.1 | 100 | | Evaluation dataset | 11.0 | 11.0 | 100 | ### wsj0-mix 3speakers | | SI-SNRi (dB) | SDRi (dB) | Epoch | |:------------------:|-------------:|----------:|------:| | Reference | 12.7 | 13.1 | | | Validation dataset | 11.4 | 11.4 | 100 | | Evaluation dataset | 8.9 | 8.9 | 100 |