from typing import Callable, Tuple from functools import partial import torch from parameterized import parameterized from torch import Tensor import torchaudio.functional as F from torch.autograd import gradcheck, gradgradcheck from torchaudio_unittest.common_utils import ( TestBaseMixin, get_whitenoise, rnnt_utils, ) class Autograd(TestBaseMixin): def assert_grad( self, transform: Callable[..., Tensor], inputs: Tuple[torch.Tensor], *, enable_all_grad: bool = True, ): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(dtype=self.dtype, device=self.device) if enable_all_grad: i.requires_grad = True inputs_.append(i) assert gradcheck(transform, inputs_) assert gradgradcheck(transform, inputs_) def test_lfilter_x(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2) a = torch.tensor([0.7, 0.2, 0.6]) b = torch.tensor([0.4, 0.2, 0.9]) x.requires_grad = True self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False) def test_lfilter_a(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2) a = torch.tensor([0.7, 0.2, 0.6]) b = torch.tensor([0.4, 0.2, 0.9]) a.requires_grad = True self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False) def test_lfilter_b(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2) a = torch.tensor([0.7, 0.2, 0.6]) b = torch.tensor([0.4, 0.2, 0.9]) b.requires_grad = True self.assert_grad(F.lfilter, (x, a, b), enable_all_grad=False) def test_lfilter_all_inputs(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2) a = torch.tensor([0.7, 0.2, 0.6]) b = torch.tensor([0.4, 0.2, 0.9]) self.assert_grad(F.lfilter, (x, a, b)) def test_lfilter_filterbanks(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=3) a = torch.tensor([[0.7, 0.2, 0.6], [0.8, 0.2, 0.9]]) b = torch.tensor([[0.4, 0.2, 0.9], [0.7, 0.2, 0.6]]) self.assert_grad(partial(F.lfilter, batching=False), (x, a, b)) def test_lfilter_batching(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2) a = torch.tensor([[0.7, 0.2, 0.6], [0.8, 0.2, 0.9]]) b = torch.tensor([[0.4, 0.2, 0.9], [0.7, 0.2, 0.6]]) self.assert_grad(F.lfilter, (x, a, b)) def test_filtfilt_a(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2) a = torch.tensor([0.7, 0.2, 0.6]) b = torch.tensor([0.4, 0.2, 0.9]) a.requires_grad = True self.assert_grad(F.filtfilt, (x, a, b), enable_all_grad=False) def test_filtfilt_b(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2) a = torch.tensor([0.7, 0.2, 0.6]) b = torch.tensor([0.4, 0.2, 0.9]) b.requires_grad = True self.assert_grad(F.filtfilt, (x, a, b), enable_all_grad=False) def test_filtfilt_all_inputs(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2) a = torch.tensor([0.7, 0.2, 0.6]) b = torch.tensor([0.4, 0.2, 0.9]) self.assert_grad(F.filtfilt, (x, a, b)) def test_filtfilt_batching(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=2) a = torch.tensor([[0.7, 0.2, 0.6], [0.8, 0.2, 0.9]]) b = torch.tensor([[0.4, 0.2, 0.9], [0.7, 0.2, 0.6]]) self.assert_grad(F.filtfilt, (x, a, b)) def test_biquad(self): torch.random.manual_seed(2434) x = get_whitenoise(sample_rate=22050, duration=0.01, n_channels=1) a = torch.tensor([0.7, 0.2, 0.6]) b = torch.tensor([0.4, 0.2, 0.9]) self.assert_grad(F.biquad, (x, b[0], b[1], b[2], a[0], a[1], a[2])) @parameterized.expand([ (800, 0.7, True), (800, 0.7, False), ]) def test_band_biquad(self, central_freq, Q, noise): torch.random.manual_seed(2434) sr = 22050 x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1) central_freq = torch.tensor(central_freq) Q = torch.tensor(Q) self.assert_grad(F.band_biquad, (x, sr, central_freq, Q, noise)) @parameterized.expand([ (800, 0.7, 10), (800, 0.7, -10), ]) def test_bass_biquad(self, central_freq, Q, gain): torch.random.manual_seed(2434) sr = 22050 x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1) central_freq = torch.tensor(central_freq) Q = torch.tensor(Q) gain = torch.tensor(gain) self.assert_grad(F.bass_biquad, (x, sr, gain, central_freq, Q)) @parameterized.expand([ (3000, 0.7, 10), (3000, 0.7, -10), ]) def test_treble_biquad(self, central_freq, Q, gain): torch.random.manual_seed(2434) sr = 22050 x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1) central_freq = torch.tensor(central_freq) Q = torch.tensor(Q) gain = torch.tensor(gain) self.assert_grad(F.treble_biquad, (x, sr, gain, central_freq, Q)) @parameterized.expand([ (800, 0.7, ), ]) def test_allpass_biquad(self, central_freq, Q): torch.random.manual_seed(2434) sr = 22050 x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1) central_freq = torch.tensor(central_freq) Q = torch.tensor(Q) self.assert_grad(F.allpass_biquad, (x, sr, central_freq, Q)) @parameterized.expand([ (800, 0.7, ), ]) def test_lowpass_biquad(self, cutoff_freq, Q): torch.random.manual_seed(2434) sr = 22050 x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1) cutoff_freq = torch.tensor(cutoff_freq) Q = torch.tensor(Q) self.assert_grad(F.lowpass_biquad, (x, sr, cutoff_freq, Q)) @parameterized.expand([ (800, 0.7, ), ]) def test_highpass_biquad(self, cutoff_freq, Q): torch.random.manual_seed(2434) sr = 22050 x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1) cutoff_freq = torch.tensor(cutoff_freq) Q = torch.tensor(Q) self.assert_grad(F.highpass_biquad, (x, sr, cutoff_freq, Q)) @parameterized.expand([ (800, 0.7, True), (800, 0.7, False), ]) def test_bandpass_biquad(self, central_freq, Q, const_skirt_gain): torch.random.manual_seed(2434) sr = 22050 x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1) central_freq = torch.tensor(central_freq) Q = torch.tensor(Q) self.assert_grad(F.bandpass_biquad, (x, sr, central_freq, Q, const_skirt_gain)) @parameterized.expand([ (800, 0.7, 10), (800, 0.7, -10), ]) def test_equalizer_biquad(self, central_freq, Q, gain): torch.random.manual_seed(2434) sr = 22050 x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1) central_freq = torch.tensor(central_freq) Q = torch.tensor(Q) gain = torch.tensor(gain) self.assert_grad(F.equalizer_biquad, (x, sr, central_freq, gain, Q)) @parameterized.expand([ (800, 0.7, ), ]) def test_bandreject_biquad(self, central_freq, Q): torch.random.manual_seed(2434) sr = 22050 x = get_whitenoise(sample_rate=sr, duration=0.01, n_channels=1) central_freq = torch.tensor(central_freq) Q = torch.tensor(Q) self.assert_grad(F.bandreject_biquad, (x, sr, central_freq, Q)) class AutogradFloat32(TestBaseMixin): def assert_grad( self, transform: Callable[..., Tensor], inputs: Tuple[torch.Tensor], enable_all_grad: bool = True, ): inputs_ = [] for i in inputs: if torch.is_tensor(i): i = i.to(dtype=self.dtype, device=self.device) if enable_all_grad: i.requires_grad = True inputs_.append(i) # gradcheck with float32 requires higher atol and epsilon assert gradcheck(transform, inputs, eps=1e-3, atol=1e-3, nondet_tol=0.) @parameterized.expand([ (rnnt_utils.get_B1_T10_U3_D4_data, ), (rnnt_utils.get_B2_T4_U3_D3_data, ), (rnnt_utils.get_B1_T2_U3_D5_data, ), ]) def test_rnnt_loss(self, data_func): def get_data(data_func, device): data = data_func() if type(data) == tuple: data = data[0] return data data = get_data(data_func, self.device) inputs = ( data["logits"].to(torch.float32), # logits data["targets"], # targets data["logit_lengths"], # logit_lengths data["target_lengths"], # target_lengths data["blank"], # blank -1, # clamp ) self.assert_grad(F.rnnt_loss, inputs, enable_all_grad=False)