import torch import torch.nn as nn import torchaudio import math steam_train = "assets/steam-train-whistle-daniel_simon.mp3" x, sample_rate = torchaudio.load(steam_train) print(sample_rate) print(x.size()) print(x[10000]) print(x.min(), x.max()) print(x.mean(), x.std()) x, sample_rate = torchaudio.load(steam_train, out=torch.LongTensor()) print(sample_rate) print(x.size()) print(x[10000]) print(x.min(), x.max()) sine_wave = "assets/sinewave.wav" sr = 16000 freq = 440 volume = 0.3 y = (torch.cos(2*math.pi*torch.arange(0, 4*sr) * freq/sr)).float() y.unsqueeze_(1) # y is between -1 and 1, so must scale y = (y*volume*2**31).long() torchaudio.save(sine_wave, y, sr) print(y.min(), y.max())