""" Media Stream API - Pt. 2 ======================== This tutorial is the continuation of `Media Stream API - Pt.1 <./streaming_api_tutorial.html>`__. This shows how to use `StreamReader` for - Device inputs, such as microphone, webcam and screen recording - Generating synthetic audio / video - Applying preprocessing with custom filter expressions """ import torch import torchaudio print(torch.__version__) print(torchaudio.__version__) ###################################################################### # try: from torchaudio.io import StreamReader except ModuleNotFoundError: try: import google.colab print( """ To enable running this notebook in Google Colab, install nightly torch and torchaudio builds and the requisite third party libraries by adding the following code block to the top of the notebook before running it: !pip3 uninstall -y torch torchvision torchaudio !pip3 install --pre torch torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu !add-apt-repository -y ppa:savoury1/ffmpeg4 !apt-get -qq install -y ffmpeg """ ) except ModuleNotFoundError: pass raise import IPython import matplotlib.pyplot as plt base_url = "https://download.pytorch.org/torchaudio/tutorial-assets" AUDIO_URL = f"{base_url}/Lab41-SRI-VOiCES-src-sp0307-ch127535-sg0042.wav" VIDEO_URL = f"{base_url}/stream-api/NASAs_Most_Scientifically_Complex_Space_Observatory_Requires_Precision-MP4.mp4" ###################################################################### # Audio / Video device input # -------------------------- # # .. seealso:: # # - `Accelerated Video Decoding with NVDEC <../hw_acceleration_tutorial.html>`__. # - `Online ASR with Emformer RNN-T <./online_asr_tutorial.html>`__. # - `Device ASR with Emformer RNN-T <./device_asr.html>`__. # # Given that the system has proper media devices and libavdevice is # configured to use the devices, the streaming API can # pull media streams from these devices. # # To do this, we pass additional parameters ``format`` and ``option`` # to the constructor. ``format`` specifies the device component and # ``option`` dictionary is specific to the specified component. # # The exact arguments to be passed depend on the system configuration. # Please refer to https://ffmpeg.org/ffmpeg-devices.html for the detail. # # The following example illustrates how one can do this on MacBook Pro. # # First, we need to check the available devices. # # .. code:: # # $ ffmpeg -f avfoundation -list_devices true -i "" # [AVFoundation indev @ 0x143f04e50] AVFoundation video devices: # [AVFoundation indev @ 0x143f04e50] [0] FaceTime HD Camera # [AVFoundation indev @ 0x143f04e50] [1] Capture screen 0 # [AVFoundation indev @ 0x143f04e50] AVFoundation audio devices: # [AVFoundation indev @ 0x143f04e50] [0] MacBook Pro Microphone # # We use `FaceTime HD Camera` as video device (index 0) and # `MacBook Pro Microphone` as audio device (index 0). # # If we do not pass any ``option``, the device uses its default # configuration. The decoder might not support the configuration. # # .. code:: # # >>> StreamReader( # ... src="0:0", # The first 0 means `FaceTime HD Camera`, and # ... # the second 0 indicates `MacBook Pro Microphone`. # ... format="avfoundation", # ... ) # [avfoundation @ 0x125d4fe00] Selected framerate (29.970030) is not supported by the device. # [avfoundation @ 0x125d4fe00] Supported modes: # [avfoundation @ 0x125d4fe00] 1280x720@[1.000000 30.000000]fps # [avfoundation @ 0x125d4fe00] 640x480@[1.000000 30.000000]fps # Traceback (most recent call last): # File "", line 1, in # ... # RuntimeError: Failed to open the input: 0:0 # # By providing ``option``, we can change the format that the device # streams to a format supported by decoder. # # .. code:: # # >>> streamer = StreamReader( # ... src="0:0", # ... format="avfoundation", # ... option={"framerate": "30", "pixel_format": "bgr0"}, # ... ) # >>> for i in range(streamer.num_src_streams): # ... print(streamer.get_src_stream_info(i)) # SourceVideoStream(media_type='video', codec='rawvideo', codec_long_name='raw video', format='bgr0', bit_rate=0, width=640, height=480, frame_rate=30.0) # SourceAudioStream(media_type='audio', codec='pcm_f32le', codec_long_name='PCM 32-bit floating point little-endian', format='flt', bit_rate=3072000, sample_rate=48000.0, num_channels=2) # ###################################################################### # Synthetic source streams # ------------------------ # # As a part of device integration, ffmpeg provides a "virtual device" # interface. This interface provides synthetic audio / video data # generation using libavfilter. # # To use this, we set ``format=lavfi`` and provide a filter description # to ``src``. # # The detail of filter description can be found at # https://ffmpeg.org/ffmpeg-filters.html # ###################################################################### # Audio Examples # ~~~~~~~~~~~~~~ # ###################################################################### # Sine wave # ^^^^^^^^^ # https://ffmpeg.org/ffmpeg-filters.html#sine # # .. code:: # # StreamReader(src="sine=sample_rate=8000:frequency=360", format="lavfi") # # .. raw:: html # # # # ###################################################################### # Signal with arbitral expression # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # # https://ffmpeg.org/ffmpeg-filters.html#aevalsrc # # .. code:: # # # 5 Hz binaural beats on a 360 Hz carrier # StreamReader( # src=( # 'aevalsrc=' # 'sample_rate=8000:' # 'exprs=0.1*sin(2*PI*(360-5/2)*t)|0.1*sin(2*PI*(360+5/2)*t)' # ), # format='lavfi', # ) # # .. raw:: html # # # # ###################################################################### # Noise # ^^^^^ # https://ffmpeg.org/ffmpeg-filters.html#anoisesrc # # .. code:: # # StreamReader(src="anoisesrc=color=pink:sample_rate=8000:amplitude=0.5", format="lavfi") # # .. raw:: html # # # # ###################################################################### # Video Examples # ~~~~~~~~~~~~~~ # ###################################################################### # Cellular automaton # ^^^^^^^^^^^^^^^^^^ # https://ffmpeg.org/ffmpeg-filters.html#cellauto # # .. code:: # # StreamReader(src=f"cellauto", format="lavfi") # # .. raw:: html # # # ###################################################################### # Mandelbrot # ^^^^^^^^^^ # https://ffmpeg.org/ffmpeg-filters.html#cellauto # # .. code:: # # StreamReader(src=f"mandelbrot", format="lavfi") # # .. raw:: html # # # ###################################################################### # MPlayer Test patterns # ^^^^^^^^^^^^^^^^^^^^^ # https://ffmpeg.org/ffmpeg-filters.html#mptestsrc # # .. code:: # # StreamReader(src=f"mptestsrc", format="lavfi") # # .. raw:: html # # # ###################################################################### # John Conway's life game # ^^^^^^^^^^^^^^^^^^^^^^^ # https://ffmpeg.org/ffmpeg-filters.html#life # # .. code:: # # StreamReader(src=f"life", format="lavfi") # # .. raw:: html # # # ###################################################################### # Sierpinski carpet/triangle fractal # ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ # https://ffmpeg.org/ffmpeg-filters.html#sierpinski # # .. code:: # # StreamReader(src=f"sierpinski", format="lavfi") # # .. raw:: html # # # ###################################################################### # Custom filters # -------------- # # When defining an output stream, you can use # :py:meth:`~torchaudio.io.StreamReader.add_audio_stream` and # :py:meth:`~torchaudio.io.StreamReader.add_video_stream` methods. # # These methods take ``filter_desc`` argument, which is a string # formatted according to ffmpeg's # `filter expression `_. # # The difference between ``add_basic_(audio|video)_stream`` and # ``add_(audio|video)_stream`` is that ``add_basic_(audio|video)_stream`` # constructs the filter expression and passes it to the same underlying # implementation. Everything ``add_basic_(audio|video)_stream`` can be # achieved with ``add_(audio|video)_stream``. # # .. note:: # # - When applying custom filters, the client code must convert # the audio/video stream to one of the formats that torchaudio # can convert to tensor format. # This can be achieved, for example, by applying # ``format=pix_fmts=rgb24`` to video stream and # ``aformat=sample_fmts=fltp`` to audio stream. # - Each output stream has separate filter graph. Therefore, it is # not possible to use different input/output streams for a # filter expression. However, it is possible to split one input # stream into multiple of them, and merge them later. # ###################################################################### # Audio Examples # ~~~~~~~~~~~~~~ # # # fmt: off descs = [ # No filtering "anull", # Apply a highpass filter then a lowpass filter "highpass=f=200,lowpass=f=1000", # Manipulate spectrogram ( "afftfilt=" "real='hypot(re,im)*sin(0)':" "imag='hypot(re,im)*cos(0)':" "win_size=512:" "overlap=0.75" ), # Manipulate spectrogram ( "afftfilt=" "real='hypot(re,im)*cos((random(0)*2-1)*2*3.14)':" "imag='hypot(re,im)*sin((random(1)*2-1)*2*3.14)':" "win_size=128:" "overlap=0.8" ), ] # fmt: on ###################################################################### # sample_rate = 8000 streamer = StreamReader(AUDIO_URL) for desc in descs: streamer.add_audio_stream( frames_per_chunk=40000, filter_desc=f"aresample={sample_rate},{desc},aformat=sample_fmts=fltp", ) chunks = next(streamer.stream()) def _display(i): print("filter_desc:", streamer.get_out_stream_info(i).filter_description) _, axs = plt.subplots(2, 1) waveform = chunks[i][:, 0] axs[0].plot(waveform) axs[0].grid(True) axs[0].set_ylim([-1, 1]) plt.setp(axs[0].get_xticklabels(), visible=False) axs[1].specgram(waveform, Fs=sample_rate) return IPython.display.Audio(chunks[i].T, rate=sample_rate) ###################################################################### # Original # ^^^^^^^^ # _display(0) ###################################################################### # Highpass / lowpass filter # ^^^^^^^^^^^^^^^^^^^^^^^^^ # _display(1) ###################################################################### # FFT filter - Robot 🤖 # ^^^^^^^^^^^^^^^^^^^^^ # _display(2) ###################################################################### # FFT filter - Whisper # ^^^^^^^^^^^^^^^^^^^^ # _display(3) ###################################################################### # Video Examples # ~~~~~~~~~~~~~~ # # fmt: off descs = [ # No effect "null", # Split the input stream and apply horizontal flip to the right half. ( "split [main][tmp];" "[tmp] crop=iw/2:ih:0:0, hflip [flip];" "[main][flip] overlay=W/2:0" ), # Edge detection "edgedetect=mode=canny", # Rotate image by randomly and fill the background with brown "rotate=angle=-random(1)*PI:fillcolor=brown", # Manipulate pixel values based on the coordinate "geq=r='X/W*r(X,Y)':g='(1-X/W)*g(X,Y)':b='(H-Y)/H*b(X,Y)'" ] # fmt: on ###################################################################### # streamer = StreamReader(VIDEO_URL) for desc in descs: streamer.add_video_stream( frames_per_chunk=30, filter_desc=f"fps=10,{desc},format=pix_fmts=rgb24", ) streamer.seek(12) chunks = next(streamer.stream()) def _display(i): print("filter_desc:", streamer.get_out_stream_info(i).filter_description) _, axs = plt.subplots(1, 3, figsize=(8, 1.9)) chunk = chunks[i] for j in range(3): axs[j].imshow(chunk[10 * j + 1].permute(1, 2, 0)) axs[j].set_axis_off() plt.tight_layout() plt.show(block=False) ###################################################################### # Original # ^^^^^^^^ _display(0) ###################################################################### # Mirror # ^^^^^^ _display(1) ###################################################################### # Edge detection # ^^^^^^^^^^^^^^^ _display(2) ###################################################################### # Random rotation # ^^^^^^^^^^^^^^^ _display(3) ###################################################################### # Pixel manipulation # ^^^^^^^^^^^^^^^^^^ _display(4)