Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
ffeba11a
Commit
ffeba11a
authored
Sep 02, 2024
by
mayp777
Browse files
UPDATE
parent
29deb085
Changes
337
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
3658 additions
and
243 deletions
+3658
-243
torchaudio/csrc/CMakeLists.txt
torchaudio/csrc/CMakeLists.txt
+40
-154
torchaudio/csrc/cuctc/CMakeLists.txt
torchaudio/csrc/cuctc/CMakeLists.txt
+43
-0
torchaudio/csrc/cuctc/LICENSE
torchaudio/csrc/cuctc/LICENSE
+25
-0
torchaudio/csrc/cuctc/include/ctc_prefix_decoder.h
torchaudio/csrc/cuctc/include/ctc_prefix_decoder.h
+64
-0
torchaudio/csrc/cuctc/include/ctc_prefix_decoder_host.h
torchaudio/csrc/cuctc/include/ctc_prefix_decoder_host.h
+159
-0
torchaudio/csrc/cuctc/src/bitonic_topk/LICENSE
torchaudio/csrc/cuctc/src/bitonic_topk/LICENSE
+201
-0
torchaudio/csrc/cuctc/src/bitonic_topk/bitonic_sort.cuh
torchaudio/csrc/cuctc/src/bitonic_topk/bitonic_sort.cuh
+316
-0
torchaudio/csrc/cuctc/src/bitonic_topk/pow2_utils.cuh
torchaudio/csrc/cuctc/src/bitonic_topk/pow2_utils.cuh
+163
-0
torchaudio/csrc/cuctc/src/bitonic_topk/warpsort_topk.cuh
torchaudio/csrc/cuctc/src/bitonic_topk/warpsort_topk.cuh
+517
-0
torchaudio/csrc/cuctc/src/ctc_fast_divmod.cuh
torchaudio/csrc/cuctc/src/ctc_fast_divmod.cuh
+167
-0
torchaudio/csrc/cuctc/src/ctc_prefix_decoder.cpp
torchaudio/csrc/cuctc/src/ctc_prefix_decoder.cpp
+379
-0
torchaudio/csrc/cuctc/src/ctc_prefix_decoder_kernel_v2.cu
torchaudio/csrc/cuctc/src/ctc_prefix_decoder_kernel_v2.cu
+999
-0
torchaudio/csrc/cuctc/src/device_data_wrap.h
torchaudio/csrc/cuctc/src/device_data_wrap.h
+89
-0
torchaudio/csrc/cuctc/src/device_log_prob.cuh
torchaudio/csrc/cuctc/src/device_log_prob.cuh
+77
-0
torchaudio/csrc/cuctc/src/python_binding.cpp
torchaudio/csrc/cuctc/src/python_binding.cpp
+105
-0
torchaudio/csrc/ffmpeg/CMakeLists.txt
torchaudio/csrc/ffmpeg/CMakeLists.txt
+94
-0
torchaudio/csrc/ffmpeg/compat.cpp
torchaudio/csrc/ffmpeg/compat.cpp
+62
-0
torchaudio/csrc/ffmpeg/ffmpeg.cpp
torchaudio/csrc/ffmpeg/ffmpeg.cpp
+30
-43
torchaudio/csrc/ffmpeg/ffmpeg.h
torchaudio/csrc/ffmpeg/ffmpeg.h
+34
-11
torchaudio/csrc/ffmpeg/filter_graph.cpp
torchaudio/csrc/ffmpeg/filter_graph.cpp
+94
-35
No files found.
Too many changes to show.
To preserve performance only
337 of 337+
files are displayed.
Plain diff
Email patch
torchaudio/csrc/CMakeLists.txt
View file @
ffeba11a
# the following line is added in order to export symbols when building on Windows
# this approach has some limitations as documented in https://github.com/pytorch/pytorch/pull/3650
if
(
MSVC
)
set
(
CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON
)
endif
()
################################################################################
################################################################################
# libtorchaudio
# libtorchaudio
################################################################################
################################################################################
set
(
set
(
LIBTORCHAUDIO_SOURCES
sources
lfilter.cpp
lfilter.cpp
overdrive.cpp
overdrive.cpp
utils.cpp
utils.cpp
)
)
set
(
set
(
LIBTORCHAUDIO_INCLUDE_DIRS
additional_libs
${
PROJECT_SOURCE_DIR
}
)
)
set
(
set
(
LIBTORCHAUDIO_LINK_LIBRARIES
compile_definitions
)
torch
)
set
(
LIBTORCHAUDIO_COMPILE_DEFINITIONS
)
#------------------------------------------------------------------------------#
#------------------------------------------------------------------------------#
# START OF CUSTOMIZATION LOGICS
# START OF CUSTOMIZATION LOGICS
...
@@ -33,7 +21,7 @@ set(
...
@@ -33,7 +21,7 @@ set(
if
(
BUILD_RNNT
)
if
(
BUILD_RNNT
)
list
(
list
(
APPEND
APPEND
LIBTORCHAUDIO_SOURCES
sources
rnnt/cpu/compute_alphas.cpp
rnnt/cpu/compute_alphas.cpp
rnnt/cpu/compute_betas.cpp
rnnt/cpu/compute_betas.cpp
rnnt/cpu/compute.cpp
rnnt/cpu/compute.cpp
...
@@ -45,16 +33,18 @@ if(BUILD_RNNT)
...
@@ -45,16 +33,18 @@ if(BUILD_RNNT)
if
(
USE_CUDA
)
if
(
USE_CUDA
)
list
(
list
(
APPEND
APPEND
LIBTORCHAUDIO_SOURCES
sources
rnnt/gpu/compute_alphas.cu
rnnt/gpu/compute_alphas.cu
rnnt/gpu/compute_betas.cu
rnnt/gpu/compute_betas.cu
rnnt/gpu/compute.cu
rnnt/gpu/compute.cu
)
)
endif
()
endif
()
if
(
USE_ROCM
)
if
(
USE_ROCM
)
set
(
CMAKE_C_COMPILER
"hipcc"
)
set
(
CMAKE_CXX_COMPILER
"hipcc"
)
list
(
list
(
APPEND
APPEND
LIBTORCHAUDIO_SOURCES
sources
rnnt/dcu/compute_alphas.cpp
rnnt/dcu/compute_alphas.cpp
rnnt/dcu/compute_betas.cpp
rnnt/dcu/compute_betas.cpp
rnnt/dcu/compute.cpp
rnnt/dcu/compute.cpp
...
@@ -63,98 +53,59 @@ if(BUILD_RNNT)
...
@@ -63,98 +53,59 @@ if(BUILD_RNNT)
endif
()
endif
()
if
(
USE_CUDA
)
if
(
BUILD_RIR
)
list
(
list
(
APPEND sources rir.cpp
)
APPEND
list
(
APPEND compile_definitions INCLUDE_RIR
)
LIBTORCHAUDIO_INCLUDE_DIRS
${
CUDA_TOOLKIT_INCLUDE
}
)
list
(
APPEND
LIBTORCHAUDIO_LINK_LIBRARIES
${
C10_CUDA_LIBRARY
}
${
CUDA_CUDART_LIBRARY
}
)
list
(
APPEND
LIBTORCHAUDIO_COMPILE_DEFINITIONS
USE_CUDA
)
endif
()
endif
()
if
(
USE_ROCM
)
if
(
BUILD_ALIGN
)
list
(
APPEND
LIBTORCHAUDIO_INCLUDE_DIRS
${
CUDA_TOOLKIT_INCLUDE
}
)
list
(
APPEND
LIBTORCHAUDIO_LINK_LIBRARIES
${
C10_CUDA_LIBRARY
}
${
CUDA_CUDART_LIBRARY
}
)
list
(
list
(
APPEND
APPEND
LIBTORCHAUDIO_COMPILE_DEFINITIONS
sources
USE_ROCM
forced_align/compute.cpp
forced_align/cpu/compute.cpp
)
)
list
(
APPEND compile_definitions INCLUDE_ALIGN
)
if
(
USE_CUDA
)
list
(
APPEND
sources
forced_align/gpu/compute.cu
)
endif
()
endif
()
endif
()
if
(
BUILD_KALDI
)
if
(
USE_CUDA
)
list
(
APPEND LIBTORCHAUDIO_LINK_LIBRARIES kaldi
)
list
(
APPEND LIBTORCHAUDIO_SOURCES kaldi.cpp
)
list
(
APPEND LIBTORCHAUDIO_COMPILE_DEFINITIONS INCLUDE_KALDI
)
endif
()
if
(
BUILD_SOX
)
list
(
APPEND
LIBTORCHAUDIO_LINK_LIBRARIES
libsox
)
list
(
list
(
APPEND
APPEND
LIBTORCHAUDIO_SOURCES
sources
sox/io.cpp
iir_cuda.cu
sox/utils.cpp
)
sox/effects.cpp
sox/effects_chain.cpp
sox/types.cpp
)
list
(
list
(
APPEND
APPEND
LIBTORCHAUDIO_COMPILE_DEFINITIONS
additional_libs
INCLUDE_SOX
cuda_deps
)
)
endif
()
endif
()
if
(
OpenMP_CXX_FOUND
)
if
(
OpenMP_CXX_FOUND
)
list
(
list
(
APPEND
APPEND
LIBTORCHAUDIO_LINK_LIBRARIES
additional_libs
OpenMP::OpenMP_CXX
OpenMP::OpenMP_CXX
)
)
endif
()
endif
()
if
(
USE_FFMPEG
)
list
(
APPEND
LIBTORCHAUDIO_COMPILE_DEFINITIONS
USE_FFMPEG
)
endif
()
#------------------------------------------------------------------------------#
#------------------------------------------------------------------------------#
# END OF CUSTOMIZATION LOGICS
# END OF CUSTOMIZATION LOGICS
#------------------------------------------------------------------------------#
#------------------------------------------------------------------------------#
torchaudio_library
(
torchaudio_library
(
libtorchaudio
libtorchaudio
"
${
LIBTORCHAUDIO_SOURCES
}
"
"
${
sources
}
"
"
${
LIBTORCHAUDIO_INCLUDE_DIRS
}
"
""
"
${
LIBTORCHAUDIO_LINK_LIBRARIES
}
"
"
torch;
${
additional_libs
}
"
"
${
LIBTORCHAUDIO_COMPILE_DEFINITIONS
}
"
"
${
compile_definitions
}
"
)
)
if
(
APPLE
)
if
(
APPLE
)
...
@@ -164,83 +115,18 @@ else()
...
@@ -164,83 +115,18 @@ else()
endif
()
endif
()
################################################################################
################################################################################
# libtorchaudio_ffmpeg
# Python extensions
################################################################################
if
(
USE_FFMPEG
)
set
(
LIBTORCHAUDIO_FFMPEG_SOURCES
ffmpeg/ffmpeg.cpp
ffmpeg/filter_graph.cpp
ffmpeg/stream_reader/buffer.cpp
ffmpeg/stream_reader/decoder.cpp
ffmpeg/stream_reader/sink.cpp
ffmpeg/stream_reader/stream_processor.cpp
ffmpeg/stream_reader/stream_reader.cpp
ffmpeg/stream_reader/stream_reader_wrapper.cpp
ffmpeg/stream_reader/stream_reader_binding.cpp
ffmpeg/stream_reader/stream_reader_tensor_binding.cpp
ffmpeg/stream_writer/stream_writer.cpp
ffmpeg/stream_writer/stream_writer_wrapper.cpp
ffmpeg/stream_writer/stream_writer_binding.cpp
ffmpeg/utils.cpp
)
message
(
STATUS
"FFMPEG_ROOT=$ENV{FFMPEG_ROOT}"
)
find_package
(
FFMPEG 4.1 REQUIRED COMPONENTS avdevice avfilter avformat avcodec avutil
)
torchaudio_library
(
libtorchaudio_ffmpeg
"
${
LIBTORCHAUDIO_FFMPEG_SOURCES
}
"
"
${
LIBTORCHAUDIO_INCLUDE_DIRS
}
;
${
FFMPEG_INCLUDE_DIRS
}
"
"torch;
${
FFMPEG_LIBRARIES
}
"
"
${
LIBTORCHAUDIO_COMPILE_DEFINITIONS
}
"
)
endif
()
################################################################################
# TODO: Rename this to _torchaudio_sox.so
# _torchaudio.so
################################################################################
################################################################################
if
(
BUILD_TORCHAUDIO_PYTHON_EXTENSION
)
if
(
BUILD_TORCHAUDIO_PYTHON_EXTENSION
)
set
(
set
(
EXTENSION_SOURCES
extension_sources
sox/
pybind/pybind.cpp
pybind/pybind.cpp
)
)
#----------------------------------------------------------------------------#
# START OF CUSTOMIZATION LOGICS
#----------------------------------------------------------------------------#
if
(
BUILD_SOX
)
list
(
APPEND
EXTENSION_SOURCES
sox/pybind/effects.cpp
sox/pybind/effects_chain.cpp
sox/pybind/io.cpp
sox/pybind/utils.cpp
)
endif
()
#----------------------------------------------------------------------------#
# END OF CUSTOMIZATION LOGICS
#----------------------------------------------------------------------------#
torchaudio_extension
(
torchaudio_extension
(
_torchaudio
_torchaudio
"
${
EXTENSION_SOURCES
}
"
"
${
extension_sources
}
"
""
"libtorchaudio"
""
""
libtorchaudio
"
${
LIBTORCHAUDIO_COMPILE_DEFINITIONS
}
"
)
)
if
(
USE_FFMPEG
)
set
(
FFMPEG_EXTENSION_SOURCES
ffmpeg/pybind/typedefs.cpp
ffmpeg/pybind/pybind.cpp
ffmpeg/pybind/stream_reader.cpp
ffmpeg/pybind/stream_writer.cpp
)
torchaudio_extension
(
_torchaudio_ffmpeg
"
${
FFMPEG_EXTENSION_SOURCES
}
"
"
${
FFMPEG_INCLUDE_DIRS
}
"
"libtorchaudio_ffmpeg"
""
)
endif
()
endif
()
endif
()
torchaudio/csrc/cuctc/CMakeLists.txt
0 → 100644
View file @
ffeba11a
# Custom CMakeLists for building cuda ctc decoder
set
(
CMAKE_CXX_VISIBILITY_PRESET default
)
# the following line is added in order to export symbols when building on Windows
# this approach has some limitations as documented in https://github.com/pytorch/pytorch/pull/3650
if
(
MSVC
)
set
(
CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON
)
endif
()
set
(
libctc_prefix_decoder_src
src/ctc_prefix_decoder.cpp
src/ctc_prefix_decoder_kernel_v2.cu
)
set
(
additional_libs
)
list
(
APPEND
additional_libs
cuda_deps
)
torchaudio_library
(
libctc_prefix_decoder
"
${
libctc_prefix_decoder_src
}
"
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"
${
additional_libs
}
"
""
)
if
(
BUILD_TORCHAUDIO_PYTHON_EXTENSION
)
torchaudio_extension
(
pybind11_prefixctc
src/python_binding.cpp
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"libctc_prefix_decoder;
${
additional_libs
}
"
""
)
endif
()
torchaudio/csrc/cuctc/LICENSE
0 → 100644
View file @
ffeba11a
BSD 2-Clause License
Copyright (c) 2023 Nvidia
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
torchaudio/csrc/cuctc/include/ctc_prefix_decoder.h
0 → 100644
View file @
ffeba11a
// Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef __ctc_prefix_decoder_h_
#define __ctc_prefix_decoder_h_
#include <cuda_runtime.h>
#include <cstdint>
#include <tuple>
#include <vector>
namespace
cu_ctc
{
struct
InternalData
;
std
::
uintptr_t
prefixCTC_alloc
(
std
::
uintptr_t
stream_ptr
);
void
prefixCTC_free
(
std
::
uintptr_t
inter_data_ptr
);
std
::
tuple
<
size_t
,
int
>
calculate_require_buff_and_init_internal_data
(
InternalData
*
inter_data
,
int
batch_size
,
int
seq_len
,
int
vocab_size
,
int
beam
,
std
::
uintptr_t
buff_ptr
,
size_t
buff_size
,
float
*
log_prob_data_ptr
,
int
*
original_lens
,
const
std
::
vector
<
int
>&
prob_sizes
,
const
std
::
vector
<
int
>&
prob_strides
,
int
blid
,
float
threshold
);
int
ctc_beam_search_decoder_batch_gpu
(
InternalData
*
inter_data
,
float
*
pp
,
int
blid
,
int
spid
,
int
*
clist
,
int
*
clen
,
float
*
score
);
}
// namespace cu_ctc
#endif
torchaudio/csrc/cuctc/include/ctc_prefix_decoder_host.h
0 → 100644
View file @
ffeba11a
// Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef __ctc_prefix_decoder_host_h_
#define __ctc_prefix_decoder_host_h_
#include <cuda_runtime.h>
#define CUDA_CHECK(X) \
do { \
auto result = X; \
if (result != cudaSuccess) { \
const char* p_err_str = cudaGetErrorName(result); \
fprintf( \
stderr, \
"File %s Line %d %s returned %s.\n", \
__FILE__, \
__LINE__, \
#X, \
p_err_str); \
abort(); \
} \
} while (0)
#define CHECK(X, ERROR_INFO) \
do { \
auto result = (X); \
if (!result) { \
fprintf( \
stderr, \
" File %s Line %d %s ERROR_INFO: %s .\n", \
__FILE__, \
__LINE__, \
#X, \
ERROR_INFO); \
abort(); \
} \
} while (0)
namespace
cu_ctc
{
struct
LogProb
;
int
init_log_prob_and_cal_max_select_seq_len
(
LogProb
*
log_prob_struct
,
int
blid
,
float
threshold
,
cudaStream_t
stream
);
int
CTC_prob_matrix_V2
(
LogProb
*
log_prob_struct
,
int
step
,
float2
*
pprev
,
float
*
ptable
,
float
*
ptablen
,
int
*
clast
,
int
lc
,
int
ldc
,
int
beam
,
int
ldbeam
,
int
bs
,
int
blid
,
int
spid
,
cudaStream_t
stream
);
int
CTC_prob_merge_V2
(
LogProb
*
log_prob_struct
,
int
step
,
float
*
ptable
,
float
*
ptablen
,
int
*
ptid
,
int
*
clast
,
int
*
clist
,
int
*
clen
,
int
lc
,
int
ldc
,
int
beam
,
int
ldbeam
,
int
ldseq_len
,
int
bs
,
cudaStream_t
stream
,
int
blid
);
int
CTC_prob_first_step_V2
(
LogProb
*
log_prob_struct
,
int
step
,
float2
*
pprev
,
int
*
ptid
,
int
*
clast
,
int
*
clen
,
int
*
clist
,
int
beam
,
int
ldbeam
,
int
ldseq_len
,
int
bs
,
float
*
score
,
cudaStream_t
stream
,
int
blid
);
int
CTC_prob_topK_V2
(
LogProb
*
log_prob_struct
,
int
step
,
float2
*
pprev
,
float
*
ptable
,
float
*
ptablen
,
int
*
ptid
,
int
*
clast
,
int
*
clen
,
int
*
clen2
,
int
*
clist
,
int
*
clist2
,
int
lc
,
int
ldc
,
int
beam
,
int
ldbeam
,
int
ldseq_len
,
int
blid
,
int
bs
,
float
*
score
,
float
*
topk_key_buff
,
int
*
topk_value_buff
,
cudaStream_t
stream
,
bool
is_last_step
);
int
CTC_copy_list_len_for_differnet_parity
(
LogProb
*
log_prob_struct
,
int
step
,
int
max_select_seq_len
,
int
*
clen
,
int
*
clen2
,
int
*
clist
,
int
*
clist2
,
int
bs
,
int
beam
,
int
ldbeam
,
int
ldseq_len
,
cudaStream_t
stream
);
}
// namespace cu_ctc
#endif
torchaudio/csrc/cuctc/src/bitonic_topk/LICENSE
0 → 100644
View file @
ffeba11a
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "{}"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2020 NVIDIA Corporation
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
torchaudio/csrc/cuctc/src/bitonic_topk/bitonic_sort.cuh
0 → 100644
View file @
ffeba11a
/**
* Modified from Rapidsai/raft(https://github.com/rapidsai/raft)
*
*/
#pragma once
#include <cstdint>
namespace
cu_ctc
{
namespace
topk
{
static
constexpr
int
WarpSize
=
32
;
template
<
typename
IntType
>
constexpr
inline
__host__
__device__
bool
isPo2
(
IntType
num
)
{
return
(
num
&&
!
(
num
&
(
num
-
1
)));
}
inline
__device__
int
laneId
()
{
int
id
;
asm
(
"mov.s32 %0, %%laneid;"
:
"=r"
(
id
));
return
id
;
}
/**
* @brief Shuffle the data inside a warp
* @tparam T the data type (currently assumed to be 4B)
* @param val value to be shuffled
* @param laneMask mask to be applied in order to perform xor shuffle
* @param width lane width
* @param mask mask of participating threads (Volta+)
* @return the shuffled data
*/
template
<
typename
T
>
inline
__device__
T
shfl_xor
(
T
val
,
int
laneMask
,
int
width
=
WarpSize
,
uint32_t
mask
=
0xffffffffu
)
{
#if CUDART_VERSION >= 9000
return
__shfl_xor_sync
(
mask
,
val
,
laneMask
,
width
);
#else
return
__shfl_xor
(
val
,
laneMask
,
width
);
#endif
}
/**
* @brief Shuffle the data inside a warp
* @tparam T the data type (currently assumed to be 4B)
* @param val value to be shuffled
* @param srcLane lane from where to shuffle
* @param width lane width
* @param mask mask of participating threads (Volta+)
* @return the shuffled data
*/
template
<
typename
T
>
inline
__device__
T
shfl
(
T
val
,
int
srcLane
,
int
width
=
WarpSize
,
uint32_t
mask
=
0xffffffffu
)
{
#if CUDART_VERSION >= 9000
return
__shfl_sync
(
mask
,
val
,
srcLane
,
width
);
#else
return
__shfl
(
val
,
srcLane
,
width
);
#endif
}
/** warp-wide any boolean aggregator */
inline
__device__
bool
any
(
bool
inFlag
,
uint32_t
mask
=
0xffffffffu
)
{
#if CUDART_VERSION >= 9000
inFlag
=
__any_sync
(
mask
,
inFlag
);
#else
inFlag
=
__any
(
inFlag
);
#endif
return
inFlag
;
}
template
<
typename
T
>
constexpr
T
lower_bound
()
{
if
constexpr
(
std
::
numeric_limits
<
T
>::
has_infinity
&&
std
::
numeric_limits
<
T
>::
is_signed
)
{
return
-
std
::
numeric_limits
<
T
>::
infinity
();
}
return
std
::
numeric_limits
<
T
>::
lowest
();
}
template
<
typename
T
>
constexpr
T
upper_bound
()
{
if
constexpr
(
std
::
numeric_limits
<
T
>::
has_infinity
)
{
return
std
::
numeric_limits
<
T
>::
infinity
();
}
return
std
::
numeric_limits
<
T
>::
max
();
}
namespace
helpers
{
template
<
typename
T
>
__device__
__forceinline__
void
swap
(
T
&
x
,
T
&
y
)
{
T
t
=
x
;
x
=
y
;
y
=
t
;
}
template
<
typename
T
>
__device__
__forceinline__
void
conditional_assign
(
bool
cond
,
T
&
ptr
,
T
x
)
{
if
(
cond
)
{
ptr
=
x
;
}
}
}
// namespace helpers
/**
* Warp-wide bitonic merge and sort.
* The data is strided among `warp_width` threads,
* e.g. calling `bitonic<4>(ascending=true).sort(arr)` takes a unique 4-element
* array as input of each thread in a warp and sorts them, such that for a fixed
* i, arr[i] are sorted within the threads in a warp, and for any i < j, arr[j]
* in any thread is not smaller than arr[i] in any other thread. When
* `warp_width < WarpSize`, the data is sorted within all subwarps of the warp
* independently.
*
* As an example, assuming `Size = 4`, `warp_width = 16`, and `WarpSize = 32`,
* sorting a permutation of numbers 0-63 in each subwarp yield the following
* result:
* `
* arr_i \ laneId()
* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
* 18 ... subwarp_1 subwarp_2 0 0 1 2 3 4 5 6 7 8 9 10 11
* 12 13 14 15 0 1 2 ... 1 16 17 18 19 20 21 22 23 24 25 26
* 27 28 29 30 31 16 17 18 ... 2 32 33 34 35 36 37 38 39 40 41
* 42 43 44 45 46 47 32 33 34 ... 3 48 49 50 51 52 53 54 55 56
* 57 58 59 60 61 62 63 48 49 50 ...
* `
*
* @tparam Size
* number of elements processed in each thread;
* i.e. the total data size is `Size * warp_width`.
* Must be power-of-two.
*
*/
template
<
int
Size
=
1
>
class
bitonic
{
static_assert
(
isPo2
(
Size
),
"class bitonic<Size> , size should be power of 2
\n
"
);
public:
/**
* Initialize bitonic sort config.
*
* @param ascending
* the resulting order (true: ascending, false: descending).
* @param warp_width
* the number of threads participating in the warp-level primitives;
* the total size of the sorted data is `Size * warp_width`.
* Must be power-of-two, not larger than the WarpSize.
*/
__device__
__forceinline__
explicit
bitonic
(
bool
ascending
,
int
warp_width
=
WarpSize
)
:
ascending_
(
ascending
),
warp_width_
(
warp_width
)
{}
bitonic
(
bitonic
const
&
)
=
delete
;
bitonic
(
bitonic
&&
)
=
delete
;
auto
operator
=
(
bitonic
const
&
)
->
bitonic
&
=
delete
;
auto
operator
=
(
bitonic
&&
)
->
bitonic
&
=
delete
;
/**
* You can think of this function in two ways:
*
* 1) Sort any bitonic sequence.
* 2) Merge two halfs of the input data assuming they're already sorted, and
* their order is opposite (i.e. either ascending, descending or vice-versa).
*
* The input pointers are unique per-thread.
* See the class description for the description of the data layout.
*
* @param keys
* is a device pointer to a contiguous array of keys, unique per thread;
* must be at least `Size` elements long.
* @param payloads
* are zero or more associated arrays of the same size as keys, which are
* sorted together with the keys; must be at least `Size` elements long.
*/
template
<
typename
KeyT
,
typename
...
PayloadTs
>
__device__
__forceinline__
void
merge
(
KeyT
*
__restrict__
keys
,
PayloadTs
*
__restrict__
...
payloads
)
const
{
return
bitonic
<
Size
>::
merge_
(
ascending_
,
warp_width_
,
keys
,
payloads
...);
}
/**
* Sort the data.
* The input pointers are unique per-thread.
* See the class description for the description of the data layout.
*
* @param keys
* is a device pointer to a contiguous array of keys, unique per thread;
* must be at least `Size` elements long.
* @param payloads
* are zero or more associated arrays of the same size as keys, which are
* sorted together with the keys; must be at least `Size` elements long.
*/
template
<
typename
KeyT
,
typename
...
PayloadTs
>
__device__
__forceinline__
void
sort
(
KeyT
*
__restrict__
keys
,
PayloadTs
*
__restrict__
...
payloads
)
const
{
return
bitonic
<
Size
>::
sort_
(
ascending_
,
warp_width_
,
keys
,
payloads
...);
}
/**
* @brief `merge` variant for the case of one element per thread
* (pass input by a reference instead of a pointer).
*
* @param key
* @param payload
*/
template
<
typename
KeyT
,
typename
...
PayloadTs
,
int
S
=
Size
>
__device__
__forceinline__
auto
merge
(
KeyT
&
__restrict__
key
,
PayloadTs
&
__restrict__
...
payload
)
const
->
std
::
enable_if_t
<
S
==
1
,
void
>
// SFINAE to enable this for Size == 1
// only
{
static_assert
(
S
==
Size
);
return
merge
(
&
key
,
&
payload
...);
}
/**
* @brief `sort` variant for the case of one element per thread
* (pass input by a reference instead of a pointer).
*
* @param key
* @param payload
*/
template
<
typename
KeyT
,
typename
...
PayloadTs
,
int
S
=
Size
>
__device__
__forceinline__
auto
sort
(
KeyT
&
__restrict__
key
,
PayloadTs
&
__restrict__
...
payload
)
const
->
std
::
enable_if_t
<
S
==
1
,
void
>
// SFINAE to enable this for Size == 1
// only
{
static_assert
(
S
==
Size
);
return
sort
(
&
key
,
&
payload
...);
}
private:
const
int
warp_width_
;
const
bool
ascending_
;
template
<
int
AnotherSize
>
friend
class
bitonic
;
template
<
typename
KeyT
,
typename
...
PayloadTs
>
static
__device__
__forceinline__
void
merge_
(
bool
ascending
,
int
warp_width
,
KeyT
*
__restrict__
keys
,
PayloadTs
*
__restrict__
...
payloads
)
{
#pragma unroll
for
(
int
size
=
Size
;
size
>
1
;
size
>>=
1
)
{
const
int
stride
=
size
>>
1
;
#pragma unroll
for
(
int
offset
=
0
;
offset
<
Size
;
offset
+=
size
)
{
#pragma unroll
for
(
int
i
=
offset
+
stride
-
1
;
i
>=
offset
;
i
--
)
{
const
int
other_i
=
i
+
stride
;
KeyT
&
key
=
keys
[
i
];
KeyT
&
other
=
keys
[
other_i
];
if
(
ascending
?
key
>
other
:
key
<
other
)
{
helpers
::
swap
(
key
,
other
);
(
helpers
::
swap
(
payloads
[
i
],
payloads
[
other_i
]),
...);
}
}
}
}
const
int
lane
=
laneId
();
#pragma unroll
for
(
int
i
=
0
;
i
<
Size
;
i
++
)
{
KeyT
&
key
=
keys
[
i
];
for
(
int
stride
=
(
warp_width
>>
1
);
stride
>
0
;
stride
>>=
1
)
{
const
bool
is_second
=
lane
&
stride
;
const
KeyT
other
=
shfl_xor
(
key
,
stride
,
warp_width
);
const
bool
do_assign
=
(
ascending
!=
is_second
)
?
key
>
other
:
key
<
other
;
helpers
::
conditional_assign
(
do_assign
,
key
,
other
);
// NB: don't put shfl_xor in a conditional; it must be called by all
// threads in a warp.
(
helpers
::
conditional_assign
(
do_assign
,
payloads
[
i
],
shfl_xor
(
payloads
[
i
],
stride
,
warp_width
)),
...);
}
}
}
template
<
typename
KeyT
,
typename
...
PayloadTs
>
static
__device__
__forceinline__
void
sort_
(
bool
ascending
,
int
warp_width
,
KeyT
*
__restrict__
keys
,
PayloadTs
*
__restrict__
...
payloads
)
{
if
constexpr
(
Size
==
1
)
{
const
int
lane
=
laneId
();
for
(
int
width
=
2
;
width
<
warp_width
;
width
<<=
1
)
{
bitonic
<
1
>::
merge_
(
lane
&
width
,
width
,
keys
,
payloads
...);
}
}
else
{
constexpr
int
kSize2
=
Size
/
2
;
bitonic
<
kSize2
>::
sort_
(
false
,
warp_width
,
keys
,
payloads
...);
bitonic
<
kSize2
>::
sort_
(
true
,
warp_width
,
keys
+
kSize2
,
(
payloads
+
kSize2
)...);
}
bitonic
<
Size
>::
merge_
(
ascending
,
warp_width
,
keys
,
payloads
...);
}
};
}
// namespace topk
}
// namespace cu_ctc
torchaudio/csrc/cuctc/src/bitonic_topk/pow2_utils.cuh
0 → 100644
View file @
ffeba11a
/**
* Modified from Rapidsai/raft(https://github.com/rapidsai/raft)
*
*/
#pragma once
#include <type_traits>
namespace
cu_ctc
{
/**
* @brief Give logarithm of the number to base-2
* @tparam IntType data type (checked only for integers)
*/
template
<
typename
IntType
>
constexpr
__device__
IntType
log2
(
IntType
num
,
IntType
ret
=
IntType
(
0
))
{
return
num
<=
IntType
(
1
)
?
ret
:
log2
(
num
>>
IntType
(
1
),
++
ret
);
}
/**
* @brief Fast arithmetics and alignment checks for power-of-two values known at
* compile time.
*
* @tparam Value_ a compile-time value representable as a power-of-two.
*/
template
<
auto
Value_
>
struct
Pow2
{
typedef
decltype
(
Value_
)
Type
;
static
constexpr
Type
Value
=
Value_
;
static
constexpr
Type
Log2
=
log2
(
Value
);
static
constexpr
Type
Mask
=
Value
-
1
;
static_assert
(
std
::
is_integral
<
Type
>::
value
,
"Value must be integral."
);
static_assert
(
Value
&&
!
(
Value
&
Mask
),
"Value must be power of two."
);
#define Pow2_FUNC_QUALIFIER static constexpr __host__ __device__ __forceinline__
#define Pow2_WHEN_INTEGRAL(I) std::enable_if_t<Pow2_IS_REPRESENTABLE_AS(I), I>
#define Pow2_IS_REPRESENTABLE_AS(I) \
(std::is_integral<I>::value && Type(I(Value)) == Value)
/**
* Integer division by Value truncated toward zero
* (same as `x / Value` in C++).
*
* Invariant: `x = Value * quot(x) + rem(x)`
*/
template
<
typename
I
>
Pow2_FUNC_QUALIFIER
Pow2_WHEN_INTEGRAL
(
I
)
quot
(
I
x
)
noexcept
{
if
constexpr
(
std
::
is_signed
<
I
>::
value
)
return
(
x
>>
I
(
Log2
))
+
(
x
<
0
&&
(
x
&
I
(
Mask
)));
if
constexpr
(
std
::
is_unsigned
<
I
>::
value
)
return
x
>>
I
(
Log2
);
}
/**
* Remainder of integer division by Value truncated toward zero
* (same as `x % Value` in C++).
*
* Invariant: `x = Value * quot(x) + rem(x)`.
*/
template
<
typename
I
>
Pow2_FUNC_QUALIFIER
Pow2_WHEN_INTEGRAL
(
I
)
rem
(
I
x
)
noexcept
{
if
constexpr
(
std
::
is_signed
<
I
>::
value
)
return
x
<
0
?
-
((
-
x
)
&
I
(
Mask
))
:
(
x
&
I
(
Mask
));
if
constexpr
(
std
::
is_unsigned
<
I
>::
value
)
return
x
&
I
(
Mask
);
}
/**
* Integer division by Value truncated toward negative infinity
* (same as `x // Value` in Python).
*
* Invariant: `x = Value * div(x) + mod(x)`.
*
* Note, `div` and `mod` for negative values are slightly faster
* than `quot` and `rem`, but behave slightly different
* compared to normal C++ operators `/` and `%`.
*/
template
<
typename
I
>
Pow2_FUNC_QUALIFIER
Pow2_WHEN_INTEGRAL
(
I
)
div
(
I
x
)
noexcept
{
return
x
>>
I
(
Log2
);
}
/**
* x modulo Value operation (remainder of the `div(x)`)
* (same as `x % Value` in Python).
*
* Invariant: `mod(x) >= 0`
* Invariant: `x = Value * div(x) + mod(x)`.
*
* Note, `div` and `mod` for negative values are slightly faster
* than `quot` and `rem`, but behave slightly different
* compared to normal C++ operators `/` and `%`.
*/
template
<
typename
I
>
Pow2_FUNC_QUALIFIER
Pow2_WHEN_INTEGRAL
(
I
)
mod
(
I
x
)
noexcept
{
return
x
&
I
(
Mask
);
}
#define Pow2_CHECK_TYPE(T) \
static_assert( \
std::is_pointer<T>::value || std::is_integral<T>::value, \
"Only pointer or integral types make sense here")
/**
* Tell whether the pointer or integral is Value-aligned.
* NB: for pointers, the alignment is checked in bytes, not in elements.
*/
template
<
typename
PtrT
>
Pow2_FUNC_QUALIFIER
bool
isAligned
(
PtrT
p
)
noexcept
{
Pow2_CHECK_TYPE
(
PtrT
);
if
constexpr
(
Pow2_IS_REPRESENTABLE_AS
(
PtrT
))
return
mod
(
p
)
==
0
;
if
constexpr
(
!
Pow2_IS_REPRESENTABLE_AS
(
PtrT
))
return
mod
(
reinterpret_cast
<
Type
>
(
p
))
==
0
;
}
/** Tell whether two pointers have the same address modulo Value. */
template
<
typename
PtrT
,
typename
PtrS
>
Pow2_FUNC_QUALIFIER
bool
areSameAlignOffsets
(
PtrT
a
,
PtrS
b
)
noexcept
{
Pow2_CHECK_TYPE
(
PtrT
);
Pow2_CHECK_TYPE
(
PtrS
);
Type
x
,
y
;
if
constexpr
(
Pow2_IS_REPRESENTABLE_AS
(
PtrT
))
x
=
Type
(
mod
(
a
));
else
x
=
mod
(
reinterpret_cast
<
Type
>
(
a
));
if
constexpr
(
Pow2_IS_REPRESENTABLE_AS
(
PtrS
))
y
=
Type
(
mod
(
b
));
else
y
=
mod
(
reinterpret_cast
<
Type
>
(
b
));
return
x
==
y
;
}
/** Get this or next Value-aligned address (in bytes) or integral. */
template
<
typename
PtrT
>
Pow2_FUNC_QUALIFIER
PtrT
roundUp
(
PtrT
p
)
noexcept
{
Pow2_CHECK_TYPE
(
PtrT
);
if
constexpr
(
Pow2_IS_REPRESENTABLE_AS
(
PtrT
))
return
(
p
+
PtrT
(
Mask
))
&
PtrT
(
~
Mask
);
if
constexpr
(
!
Pow2_IS_REPRESENTABLE_AS
(
PtrT
))
{
auto
x
=
reinterpret_cast
<
Type
>
(
p
);
return
reinterpret_cast
<
PtrT
>
((
x
+
Mask
)
&
(
~
Mask
));
}
}
/** Get this or previous Value-aligned address (in bytes) or integral. */
template
<
typename
PtrT
>
Pow2_FUNC_QUALIFIER
PtrT
roundDown
(
PtrT
p
)
noexcept
{
Pow2_CHECK_TYPE
(
PtrT
);
if
constexpr
(
Pow2_IS_REPRESENTABLE_AS
(
PtrT
))
return
p
&
PtrT
(
~
Mask
);
if
constexpr
(
!
Pow2_IS_REPRESENTABLE_AS
(
PtrT
))
{
auto
x
=
reinterpret_cast
<
Type
>
(
p
);
return
reinterpret_cast
<
PtrT
>
(
x
&
(
~
Mask
));
}
}
#undef Pow2_CHECK_TYPE
#undef Pow2_IS_REPRESENTABLE_AS
#undef Pow2_FUNC_QUALIFIER
#undef Pow2_WHEN_INTEGRAL
};
};
// namespace cu_ctc
torchaudio/csrc/cuctc/src/bitonic_topk/warpsort_topk.cuh
0 → 100644
View file @
ffeba11a
/**
* Modified from Rapidsai/raft(https://github.com/rapidsai/raft)
*
*/
#pragma once
#include <algorithm>
#include <functional>
#include <type_traits>
#include "bitonic_sort.cuh"
#include "pow2_utils.cuh"
namespace
cu_ctc
{
/*
Three APIs of different scopes are provided:
1. host function: warp_sort_topk()
2. block-wide API: class block_sort
3. warp-wide API: class warp_sort_filtered and class warp_sort_immediate
1. warp_sort_topk()
(see the docstring)
2. class block_sort
It can be regarded as a fixed size priority queue for a thread block,
although the API is not typical.
class warp_sort_filtered and warp_sort_immediate can be used to instantiate
block_sort.
It uses dynamic shared memory as an intermediate buffer.
So the required shared memory size should be calculated using
calc_smem_size_for_block_wide() and passed as the 3rd kernel launch
parameter.
To add elements to the queue, use add(T val, IdxT idx) with unique values
per-thread. Use WarpSortClass<...>::kDummy constant for the threads outside of
input bounds.
After adding is finished, function done() should be called. And finally,
store() is used to get the top-k result.
Example:
__global__ void kernel() {
block_sort<warp_sort_immediate, ...> queue(...);
for (IdxT i = threadIdx.x; i < len, i += blockDim.x) {
queue.add(in[i], in_idx[i]);
}
queue.done();
queue.store(out, out_idx);
}
int smem_size = calc_smem_size_for_block_wide<T>(...);
kernel<<<grid_dim, block_dim, smem_size>>>();
3. class warp_sort_filtered and class warp_sort_immediate
These two classes can be regarded as fixed size priority queue for a warp.
Usage is similar to class block_sort. No shared memory is needed.
The host function (warp_sort_topk) uses a heuristic to choose between these
two classes for sorting, warp_sort_immediate being chosen when the number of
inputs per warp is somewhat small (see the usage of
LaunchThreshold<warp_sort_immediate>::len_factor_for_choosing).
Example:
__global__ void kernel() {
warp_sort_immediate<...> queue(...);
int warp_id = threadIdx.x / WarpSize;
int lane_id = threadIdx.x % WarpSize;
for (IdxT i = lane_id; i < len, i += WarpSize) {
queue.add(in[i], idx[i]);
}
queue.done();
// each warp outputs to a different offset
queue.store(out + warp_id * k, out_idx + warp_id * k);
}
*/
namespace
topk
{
static
constexpr
int
kMaxCapacity
=
256
;
/** Whether 'left` should indeed be on the left w.r.t. `right`. */
template
<
bool
Ascending
,
typename
T
>
__device__
__forceinline__
auto
is_ordered
(
T
left
,
T
right
)
->
bool
{
if
constexpr
(
Ascending
)
{
return
left
<
right
;
}
if
constexpr
(
!
Ascending
)
{
return
left
>
right
;
}
}
constexpr
inline
auto
calc_capacity
(
int
k
)
->
int
{
int
capacity
=
isPo2
(
k
)
?
k
:
(
1
<<
(
log2
(
k
)
+
1
));
return
capacity
;
}
/**
* A fixed-size warp-level priority queue.
* By feeding the data through this queue, you get the `k <= Capacity`
* smallest/greatest values in the data.
*
* @tparam Capacity
* maximum number of elements in the queue.
* @tparam Ascending
* which comparison to use: `true` means `<`, collect the smallest elements,
* `false` means `>`, collect the greatest elements.
* @tparam T
* the type of keys (what is being compared)
* @tparam IdxT
* the type of payload (normally, indices of elements), i.e.
* the content sorted alongside the keys.
*/
template
<
int
Capacity
,
bool
Ascending
,
typename
T
,
typename
IdxT
>
class
warp_sort
{
static_assert
(
isPo2
(
Capacity
));
public:
/**
* The `empty` value for the choosen binary operation,
* i.e. `Ascending ? upper_bound<T>() : lower_bound<T>()`.
*/
static
constexpr
T
kDummy
=
Ascending
?
upper_bound
<
T
>
()
:
lower_bound
<
T
>
();
/** Width of the subwarp. */
static
constexpr
int
kWarpWidth
=
std
::
min
<
int
>
(
Capacity
,
WarpSize
);
/** The number of elements to select. */
const
int
k
;
/**
* Construct the warp_sort empty queue.
*
* @param k
* number of elements to select.
*/
__device__
warp_sort
(
int
k
)
:
k
(
k
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
kMaxArrLen
;
i
++
)
{
val_arr_
[
i
]
=
kDummy
;
}
}
/**
* Load k values from the pointers at the given position, and merge them in
* the storage.
*
* When it actually loads the values, it always performs some collective warp
* operations in the end, thus enforcing warp sync. This means, it's safe to
* call `store` with the same arguments after `load_sorted` without extra
* sync. Note, however, that this is not neccesarily true for the reverse
* order, because the access patterns of `store` and `load_sorted` are
* different.
*
* @param[in] in
* a device pointer to a contiguous array, unique per-subwarp
* (length: k <= kWarpWidth * kMaxArrLen).
* @param[in] in_idx
* a device pointer to a contiguous array, unique per-subwarp
* (length: k <= kWarpWidth * kMaxArrLen).
* @param[in] do_merge
* must be the same for all threads within a subwarp of size `kWarpWidth`.
* It serves as a conditional; when `false` the function does nothing.
* We need it to ensure threads within a full warp don't diverge calling
* `bitonic::merge()`.
*/
__device__
void
load_sorted
(
const
T
*
in
,
const
IdxT
*
in_idx
,
bool
do_merge
=
true
)
{
if
(
do_merge
)
{
int
idx
=
Pow2
<
kWarpWidth
>::
mod
(
laneId
())
^
Pow2
<
kWarpWidth
>::
Mask
;
#pragma unroll
for
(
int
i
=
kMaxArrLen
-
1
;
i
>=
0
;
--
i
,
idx
+=
kWarpWidth
)
{
if
(
idx
<
k
)
{
T
t
=
in
[
idx
];
if
(
is_ordered
<
Ascending
>
(
t
,
val_arr_
[
i
]))
{
val_arr_
[
i
]
=
t
;
idx_arr_
[
i
]
=
in_idx
[
idx
];
}
}
}
}
if
(
kWarpWidth
<
WarpSize
||
do_merge
)
{
topk
::
bitonic
<
kMaxArrLen
>
(
Ascending
,
kWarpWidth
)
.
merge
(
val_arr_
,
idx_arr_
);
}
}
/**
* Save the content by the pointer location.
*
* @param[out] out
* device pointer to a contiguous array, unique per-subwarp of size
* `kWarpWidth` (length: k <= kWarpWidth * kMaxArrLen).
* @param[out] out_idx
* device pointer to a contiguous array, unique per-subwarp of size
* `kWarpWidth` (length: k <= kWarpWidth * kMaxArrLen).
*/
__device__
void
store
(
T
*
out
,
IdxT
*
out_idx
)
const
{
int
idx
=
Pow2
<
kWarpWidth
>::
mod
(
laneId
());
#pragma unroll kMaxArrLen
for
(
int
i
=
0
;
i
<
kMaxArrLen
&&
idx
<
k
;
i
++
,
idx
+=
kWarpWidth
)
{
out
[
idx
]
=
val_arr_
[
i
];
out_idx
[
idx
]
=
idx_arr_
[
i
];
}
}
protected:
static
constexpr
int
kMaxArrLen
=
Capacity
/
kWarpWidth
;
T
val_arr_
[
kMaxArrLen
];
IdxT
idx_arr_
[
kMaxArrLen
];
/**
* Merge another array (sorted in the opposite direction) in the queue.
* Thanks to the other array being sorted in the opposite direction,
* it's enough to call bitonic.merge once to maintain the valid state
* of the queue.
*
* @tparam PerThreadSizeIn
* the size of the other array per-thread (compared to `kMaxArrLen`).
*
* @param keys_in
* the values to be merged in. Pointers are unique per-thread. The values
* must already be sorted in the opposite direction.
* The layout of `keys_in` must be the same as the layout of `val_arr_`.
* @param ids_in
* the associated indices of the elements in the same format as `keys_in`.
*/
template
<
int
PerThreadSizeIn
>
__device__
__forceinline__
void
merge_in
(
const
T
*
__restrict__
keys_in
,
const
IdxT
*
__restrict__
ids_in
)
{
#pragma unroll
for
(
int
i
=
std
::
min
(
kMaxArrLen
,
PerThreadSizeIn
);
i
>
0
;
i
--
)
{
T
&
key
=
val_arr_
[
kMaxArrLen
-
i
];
T
other
=
keys_in
[
PerThreadSizeIn
-
i
];
if
(
is_ordered
<
Ascending
>
(
other
,
key
))
{
key
=
other
;
idx_arr_
[
kMaxArrLen
-
i
]
=
ids_in
[
PerThreadSizeIn
-
i
];
}
}
topk
::
bitonic
<
kMaxArrLen
>
(
Ascending
,
kWarpWidth
).
merge
(
val_arr_
,
idx_arr_
);
}
};
/**
* This version of warp_sort compares each input element against the current
* estimate of k-th value before adding it to the intermediate sorting buffer.
* This makes the algorithm do less sorting steps for long input sequences
* at the cost of extra checks on each step.
*
* This implementation is preferred for large len values.
*/
template
<
int
Capacity
,
bool
Ascending
,
typename
T
,
typename
IdxT
>
class
warp_sort_filtered
:
public
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>
{
public:
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
kDummy
;
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
kWarpWidth
;
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
k
;
__device__
warp_sort_filtered
(
int
k
)
:
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>
(
k
),
buf_len_
(
0
),
k_th_
(
kDummy
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
kMaxBufLen
;
i
++
)
{
val_buf_
[
i
]
=
kDummy
;
}
}
__device__
void
add
(
T
val
,
IdxT
idx
)
{
// comparing for k_th should reduce the total amount of updates:
// `false` means the input value is surely not in the top-k values.
bool
do_add
=
is_ordered
<
Ascending
>
(
val
,
k_th_
);
// merge the buf if it's full and we cannot add an element anymore.
if
(
any
(
buf_len_
+
do_add
>
kMaxBufLen
))
{
// still, add an element before merging if possible for this thread
if
(
do_add
&&
buf_len_
<
kMaxBufLen
)
{
add_to_buf_
(
val
,
idx
);
do_add
=
false
;
}
merge_buf_
();
}
// add an element if necessary and haven't already.
if
(
do_add
)
{
add_to_buf_
(
val
,
idx
);
}
}
__device__
void
done
()
{
if
(
any
(
buf_len_
!=
0
))
{
merge_buf_
();
}
}
private:
__device__
__forceinline__
void
set_k_th_
()
{
// NB on using srcLane: it's ok if it is outside the warp size / width;
// the modulo op will be done inside the __shfl_sync.
// const int id = (k - 1) / kWarpWidth;
const
int
id
=
Pow2
<
kWarpWidth
>::
div
(
k
-
1
);
#pragma unroll
for
(
int
i
=
0
;
i
<
kMaxArrLen
;
i
++
)
{
if
(
i
==
id
)
{
k_th_
=
shfl
(
val_arr_
[
i
],
k
-
1
,
kWarpWidth
);
}
}
// k_th_ = shfl(val_arr_[kMaxArrLen - 1], k - 1, kWarpWidth);
}
__device__
__forceinline__
void
merge_buf_
()
{
topk
::
bitonic
<
kMaxBufLen
>
(
!
Ascending
,
kWarpWidth
).
sort
(
val_buf_
,
idx_buf_
);
this
->
merge_in
<
kMaxBufLen
>
(
val_buf_
,
idx_buf_
);
buf_len_
=
0
;
set_k_th_
();
// contains warp sync
#pragma unroll
for
(
int
i
=
0
;
i
<
kMaxBufLen
;
i
++
)
{
val_buf_
[
i
]
=
kDummy
;
}
}
__device__
__forceinline__
void
add_to_buf_
(
T
val
,
IdxT
idx
)
{
// NB: the loop is used here to ensure the constant indexing,
// to not force the buffers spill into the local memory.
#pragma unroll
for
(
int
i
=
0
;
i
<
kMaxBufLen
;
i
++
)
{
if
(
i
==
buf_len_
)
{
val_buf_
[
i
]
=
val
;
idx_buf_
[
i
]
=
idx
;
}
}
buf_len_
++
;
}
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
kMaxArrLen
;
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
val_arr_
;
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
idx_arr_
;
static
constexpr
int
kMaxBufLen
=
(
Capacity
<=
64
)
?
2
:
4
;
T
val_buf_
[
kMaxBufLen
];
IdxT
idx_buf_
[
kMaxBufLen
];
int
buf_len_
;
T
k_th_
;
};
/**
* This version of warp_sort adds every input element into the intermediate
* sorting buffer, and thus does the sorting step every `Capacity` input
* elements.
*
* This implementation is preferred for very small len values.
*/
template
<
int
Capacity
,
bool
Ascending
,
typename
T
,
typename
IdxT
>
class
warp_sort_immediate
:
public
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>
{
public:
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
kDummy
;
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
kWarpWidth
;
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
k
;
__device__
warp_sort_immediate
(
int
k
)
:
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>
(
k
),
buf_len_
(
0
)
{
#pragma unroll
for
(
int
i
=
0
;
i
<
kMaxArrLen
;
i
++
)
{
val_buf_
[
i
]
=
kDummy
;
}
}
__device__
void
add
(
T
val
,
IdxT
idx
)
{
// NB: the loop is used here to ensure the constant indexing,
// to not force the buffers spill into the local memory.
#pragma unroll
for
(
int
i
=
0
;
i
<
kMaxArrLen
;
++
i
)
{
if
(
i
==
buf_len_
)
{
val_buf_
[
i
]
=
val
;
idx_buf_
[
i
]
=
idx
;
}
}
++
buf_len_
;
if
(
buf_len_
==
kMaxArrLen
)
{
topk
::
bitonic
<
kMaxArrLen
>
(
!
Ascending
,
kWarpWidth
)
.
sort
(
val_buf_
,
idx_buf_
);
this
->
merge_in
<
kMaxArrLen
>
(
val_buf_
,
idx_buf_
);
#pragma unroll
for
(
int
i
=
0
;
i
<
kMaxArrLen
;
i
++
)
{
val_buf_
[
i
]
=
kDummy
;
}
buf_len_
=
0
;
}
}
__device__
void
done
()
{
if
(
buf_len_
!=
0
)
{
topk
::
bitonic
<
kMaxArrLen
>
(
!
Ascending
,
kWarpWidth
)
.
sort
(
val_buf_
,
idx_buf_
);
this
->
merge_in
<
kMaxArrLen
>
(
val_buf_
,
idx_buf_
);
}
}
private:
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
kMaxArrLen
;
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
val_arr_
;
using
warp_sort
<
Capacity
,
Ascending
,
T
,
IdxT
>::
idx_arr_
;
T
val_buf_
[
kMaxArrLen
];
IdxT
idx_buf_
[
kMaxArrLen
];
int
buf_len_
;
};
/**
* @brief Provide a ceiling division operation ie. ceil(a / b)
* @tparam IntType supposed to be only integers for now!
*/
template
<
typename
IntType
>
constexpr
inline
__host__
__device__
IntType
ceildiv
(
IntType
a
,
IntType
b
)
{
return
(
a
+
b
-
1
)
/
b
;
}
template
<
typename
IntType
>
constexpr
inline
__device__
IntType
roundUp256
(
IntType
num
)
{
// return (num + 255) / 256 * 256;
constexpr
int
MASK
=
255
;
return
(
num
+
MASK
)
&
(
~
MASK
);
}
template
<
typename
T
,
typename
IdxT
>
auto
calc_smem_size_for_block_wide
(
int
num_of_subwarp
,
int
k
)
->
int
{
return
roundUp256
(
ceildiv
(
num_of_subwarp
,
2
)
*
sizeof
(
T
)
*
k
)
+
ceildiv
(
num_of_subwarp
,
2
)
*
sizeof
(
IdxT
)
*
k
;
}
template
<
template
<
int
,
bool
,
typename
,
typename
>
class
WarpSortWarpWide
,
int
Capacity
,
bool
Ascending
,
typename
T
,
typename
IdxT
>
class
block_sort
{
using
queue_t
=
WarpSortWarpWide
<
Capacity
,
Ascending
,
T
,
IdxT
>
;
public:
__device__
block_sort
(
int
k
,
uint8_t
*
smem_buf
)
:
queue_
(
k
)
{
val_smem_
=
reinterpret_cast
<
T
*>
(
smem_buf
);
const
int
num_of_warp
=
subwarp_align
::
div
(
blockDim
.
x
);
idx_smem_
=
reinterpret_cast
<
IdxT
*>
(
smem_buf
+
roundUp256
(
ceildiv
(
num_of_warp
,
2
)
*
sizeof
(
T
)
*
k
));
}
__device__
void
add
(
T
val
,
IdxT
idx
)
{
queue_
.
add
(
val
,
idx
);
}
/**
* At the point of calling this function, the warp-level queues consumed all
* input independently. The remaining work to be done is to merge them
* together.
*
* Here we tree-merge the results using the shared memory and block sync.
*/
__device__
void
done
()
{
queue_
.
done
();
const
int
warp_id
=
subwarp_align
::
div
(
threadIdx
.
x
);
// NB: there is no need for the second __synchthreads between .load_sorted
// and .store:
// we shift the pointers every iteration, such that individual warps
// either access the same locations or do not overlap with any of the
// other warps. The access patterns within warps are different for the
// two functions, but .load_sorted implies warp sync at the end, so
// there is no need for __syncwarp either.
for
(
int
shift_mask
=
~
0
,
nwarps
=
subwarp_align
::
div
(
blockDim
.
x
),
split
=
(
nwarps
+
1
)
>>
1
;
nwarps
>
1
;
nwarps
=
split
,
split
=
(
nwarps
+
1
)
>>
1
)
{
if
(
warp_id
<
nwarps
&&
warp_id
>=
split
)
{
int
dst_warp_shift
=
(
warp_id
-
(
split
&
shift_mask
))
*
queue_
.
k
;
queue_
.
store
(
val_smem_
+
dst_warp_shift
,
idx_smem_
+
dst_warp_shift
);
}
__syncthreads
();
shift_mask
=
~
shift_mask
;
// invert the mask
{
int
src_warp_shift
=
(
warp_id
+
(
split
&
shift_mask
))
*
queue_
.
k
;
// The last argument serves as a condition for loading
// -- to make sure threads within a full warp do not diverge on
// `bitonic::merge()`
queue_
.
load_sorted
(
val_smem_
+
src_warp_shift
,
idx_smem_
+
src_warp_shift
,
warp_id
<
nwarps
-
split
);
}
}
}
/** Save the content by the pointer location. */
__device__
void
store
(
T
*
out
,
IdxT
*
out_idx
)
const
{
if
(
threadIdx
.
x
<
subwarp_align
::
Value
)
{
queue_
.
store
(
out
,
out_idx
);
}
}
private:
using
subwarp_align
=
Pow2
<
queue_t
::
kWarpWidth
>
;
queue_t
queue_
;
T
*
val_smem_
;
IdxT
*
idx_smem_
;
};
}
// namespace topk
}
// namespace cu_ctc
torchaudio/csrc/cuctc/src/ctc_fast_divmod.cuh
0 → 100644
View file @
ffeba11a
/**
* Modified from NVIDIA/cutlass(https://github.com/NVIDIA/cutlass)
*
*/
#pragma once
namespace
cu_ctc
{
template
<
typename
value_t
>
__host__
__device__
__forceinline__
value_t
clz
(
value_t
x
)
{
for
(
int
i
=
31
;
i
>=
0
;
--
i
)
{
if
((
1
<<
i
)
&
x
)
return
31
-
i
;
}
return
32
;
}
template
<
typename
value_t
>
__host__
__device__
__forceinline__
value_t
find_log2
(
value_t
x
)
{
int
a
=
int
(
31
-
clz
(
x
));
a
+=
(
x
&
(
x
-
1
))
!=
0
;
// Round up, add 1 if not a power of 2.
return
a
;
}
/**
* Find divisor, using find_log2
*/
__host__
__device__
__forceinline__
void
find_divisor
(
unsigned
int
&
mul
,
unsigned
int
&
shr
,
unsigned
int
denom
)
{
if
(
denom
==
1
)
{
mul
=
0
;
shr
=
0
;
}
else
{
unsigned
int
p
=
31
+
find_log2
(
denom
);
unsigned
m
=
unsigned
(((
1ull
<<
p
)
+
unsigned
(
denom
)
-
1
)
/
unsigned
(
denom
));
mul
=
m
;
shr
=
p
-
32
;
}
}
__host__
__device__
__forceinline__
void
fast_divmod
(
int
&
quo
,
int
&
rem
,
int
src
,
int
div
,
unsigned
int
mul
,
unsigned
int
shr
)
{
#if defined(__CUDA_ARCH__)
// Use IMUL.HI if div != 1, else simply copy the source.
quo
=
(
div
!=
1
)
?
__umulhi
(
src
,
mul
)
>>
shr
:
src
;
#else
quo
=
int
((
div
!=
1
)
?
int
(((
int64_t
)
src
*
mul
)
>>
32
)
>>
shr
:
src
);
#endif
// The remainder.
rem
=
src
-
(
quo
*
div
);
}
// For long int input
__host__
__device__
__forceinline__
void
fast_divmod
(
int
&
quo
,
int64_t
&
rem
,
int64_t
src
,
int
div
,
unsigned
int
mul
,
unsigned
int
shr
)
{
#if defined(__CUDA_ARCH__)
// Use IMUL.HI if div != 1, else simply copy the source.
quo
=
(
div
!=
1
)
?
__umulhi
(
src
,
mul
)
>>
shr
:
src
;
#else
quo
=
int
((
div
!=
1
)
?
((
src
*
mul
)
>>
32
)
>>
shr
:
src
);
#endif
// The remainder.
rem
=
src
-
(
quo
*
div
);
}
/////////////////////////////////////////////////////////////////////////////////////////////////
/// Object to encapsulate the fast division+modulus operation.
///
/// This object precomputes two values used to accelerate the computation and is
/// best used when the divisor is a grid-invariant. In this case, it may be
/// computed in host code and marshalled along other kernel arguments using the
/// 'Params' pattern.
///
/// Example:
///
///
/// int quotient, remainder, dividend, divisor;
///
/// FastDivmod divmod(divisor);
///
/// divmod(quotient, remainder, dividend);
///
/// // quotient = (dividend / divisor)
/// // remainder = (dividend % divisor)
///
struct
FastDivmod
{
int
divisor
;
unsigned
int
multiplier
;
unsigned
int
shift_right
;
/// Construct the FastDivmod object, in host code ideally.
///
/// This precomputes some values based on the divisor and is computationally
/// expensive.
__host__
__device__
__forceinline__
FastDivmod
()
:
divisor
(
0
),
multiplier
(
0
),
shift_right
(
0
)
{}
__host__
__device__
__forceinline__
FastDivmod
(
int
divisor_
)
:
divisor
(
divisor_
)
{
find_divisor
(
multiplier
,
shift_right
,
divisor
);
}
/// Computes integer division and modulus using precomputed values. This is
/// computationally inexpensive.
__host__
__device__
__forceinline__
void
operator
()(
int
&
quotient
,
int
&
remainder
,
int
dividend
)
const
{
fast_divmod
(
quotient
,
remainder
,
dividend
,
divisor
,
multiplier
,
shift_right
);
}
/// Computes integer division and modulus using precomputed values. This is
/// computationally inexpensive.
///
/// Simply returns the quotient
__host__
__device__
__forceinline__
int
divmod
(
int
&
remainder
,
int
dividend
)
const
{
int
quotient
;
fast_divmod
(
quotient
,
remainder
,
dividend
,
divisor
,
multiplier
,
shift_right
);
return
quotient
;
}
/// Computes integer division and modulus using precomputed values. This is
/// computationally inexpensive.
__host__
__device__
__forceinline__
void
operator
()(
int
&
quotient
,
int64_t
&
remainder
,
int64_t
dividend
)
const
{
fast_divmod
(
quotient
,
remainder
,
dividend
,
divisor
,
multiplier
,
shift_right
);
}
/// Computes integer division and modulus using precomputed values. This is
/// computationally inexpensive.
__host__
__device__
__forceinline__
int
divmod
(
int64_t
&
remainder
,
int64_t
dividend
)
const
{
int
quotient
;
fast_divmod
(
quotient
,
remainder
,
dividend
,
divisor
,
multiplier
,
shift_right
);
return
quotient
;
}
};
}
// namespace cu_ctc
torchaudio/csrc/cuctc/src/ctc_prefix_decoder.cpp
0 → 100644
View file @
ffeba11a
// Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cuda_runtime.h>
#include "include/ctc_prefix_decoder.h"
#include "include/ctc_prefix_decoder_host.h"
#include "device_data_wrap.h"
#include "device_log_prob.cuh"
namespace
cu_ctc
{
struct
InternalData
{
cudaStream_t
stream
;
int
lc
;
int
ldc
;
int
bs
;
int
beam
;
int
ldbeam
;
int
time
;
int
ldseq_len
;
DeviceDataWrap
<
float2
>
pprev
;
DeviceDataWrap
<
float
>
ptable
;
DeviceDataWrap
<
float
>
ptablen
;
DeviceDataWrap
<
int
>
clast
;
DeviceDataWrap
<
int
>
clen
[
2
];
DeviceDataWrap
<
int
>
clist
[
2
];
DeviceDataWrap
<
int
>
ptid
;
DeviceDataWrap
<
float
>
score
;
DeviceDataWrap
<
float
>
topk_key_buffer
;
DeviceDataWrap
<
int
>
topk_value_buffer
;
DeviceDataWrap
<
int
>
select_seqs
;
DeviceDataWrap
<
int
>
select_seq_lens
;
LogProb
log_prob
;
int
max_select_seq_len
;
};
std
::
tuple
<
size_t
,
int
>
calculate_require_buff_and_init_internal_data
(
InternalData
*
inter_data
,
int
batch_size
,
int
seq_len
,
int
vocab_size
,
int
beam
,
std
::
uintptr_t
buff_ptr
,
size_t
buff_size
,
float
*
log_prob_data_ptr
,
int
*
original_lens
,
const
std
::
vector
<
int
>&
prob_sizes
,
const
std
::
vector
<
int
>&
prob_strides
,
int
blid
,
float
threshold
)
{
if
((
batch_size
*
beam
*
seq_len
*
vocab_size
)
<=
0
)
return
{
0
,
0
};
CHECK
(
prob_sizes
.
size
()
==
3
,
"only support 3D log_prob."
);
CHECK
(
prob_strides
.
size
()
==
3
,
"only support 3D log_prob. "
);
CHECK
(
prob_sizes
[
0
]
==
batch_size
&&
prob_sizes
[
1
]
==
seq_len
&&
prob_sizes
[
2
]
==
vocab_size
,
"batch_size ,seq_len ,vocab_size must match with porb_size"
);
auto
align_size
=
[](
size_t
size
)
->
size_t
{
return
(
size
+
ALIGN_BYTES
-
1
)
/
ALIGN_BYTES
*
ALIGN_BYTES
;
};
int
lc
=
vocab_size
;
int
ldc
=
lc
;
int
ldbeam
=
((
beam
-
1
)
/
16
+
1
)
*
16
;
int
ldseq_len
=
(
seq_len
+
16
-
1
)
/
16
*
16
;
int
bs
=
batch_size
;
int
time
=
seq_len
;
size_t
require_size
=
0
;
size_t
pprev_size
=
sizeof
(
float2
)
*
bs
*
ldbeam
;
size_t
pprev_align_size
=
align_size
(
pprev_size
);
require_size
+=
pprev_align_size
;
size_t
ptable_size
=
sizeof
(
float
)
*
(
bs
*
beam
*
ldc
);
size_t
ptablen_size
=
sizeof
(
float
)
*
bs
*
beam
*
ldc
;
size_t
ptable_align_size
=
align_size
(
ptable_size
);
size_t
ptablen_align_size
=
align_size
(
ptablen_size
);
require_size
+=
ptable_align_size
;
require_size
+=
ptablen_align_size
;
size_t
clast_align_size
=
align_size
(
sizeof
(
int
)
*
ldbeam
*
bs
);
require_size
+=
clast_align_size
;
size_t
clen_align_size
=
align_size
(
sizeof
(
int
)
*
ldbeam
*
bs
);
size_t
clist_align_size
=
align_size
(
sizeof
(
int
)
*
ldseq_len
*
beam
*
bs
);
require_size
+=
2
*
clen_align_size
;
require_size
+=
2
*
clist_align_size
;
size_t
ptid_align_size
=
align_size
(
sizeof
(
int
)
*
bs
*
ldbeam
);
require_size
+=
ptid_align_size
;
size_t
score_align_size
=
align_size
(
sizeof
(
float
)
*
bs
*
ldbeam
);
require_size
+=
score_align_size
;
size_t
key_buff_align_size
=
align_size
(
sizeof
(
float
)
*
beam
*
MAX_BLOCKS
);
size_t
value_buff_align_size
=
align_size
(
sizeof
(
int
)
*
beam
*
MAX_BLOCKS
);
require_size
+=
(
key_buff_align_size
+
value_buff_align_size
);
size_t
select_seqs_align_size
=
align_size
(
sizeof
(
int
)
*
batch_size
*
seq_len
);
require_size
+=
select_seqs_align_size
;
size_t
select_seq_lens_align_size
=
align_size
(
sizeof
(
int
)
*
batch_size
);
require_size
+=
select_seq_lens_align_size
;
require_size
+=
ALIGN_BYTES
;
if
(
require_size
>
buff_size
)
return
{
require_size
,
0
};
char
*
buff_align_ptr
=
reinterpret_cast
<
char
*>
(
align_size
(
buff_ptr
));
inter_data
->
beam
=
beam
;
inter_data
->
ldbeam
=
ldbeam
;
inter_data
->
bs
=
bs
;
inter_data
->
lc
=
lc
;
inter_data
->
ldc
=
ldc
;
inter_data
->
time
=
time
;
inter_data
->
ldseq_len
=
ldseq_len
;
#define SET_DATA(NAME, TYPE, SIZE) \
inter_data->NAME = \
DeviceDataWrap<TYPE>(reinterpret_cast<TYPE*>(buff_align_ptr), SIZE); \
buff_align_ptr += SIZE;
SET_DATA
(
pprev
,
float2
,
pprev_align_size
);
SET_DATA
(
ptable
,
float
,
ptable_align_size
);
SET_DATA
(
ptablen
,
float
,
ptable_align_size
);
SET_DATA
(
clast
,
int
,
clast_align_size
);
SET_DATA
(
clen
[
0
],
int
,
clen_align_size
);
SET_DATA
(
clen
[
1
],
int
,
clen_align_size
);
SET_DATA
(
clist
[
0
],
int
,
clist_align_size
);
SET_DATA
(
clist
[
1
],
int
,
clist_align_size
);
SET_DATA
(
ptid
,
int
,
ptid_align_size
);
SET_DATA
(
score
,
float
,
score_align_size
);
SET_DATA
(
topk_key_buffer
,
float
,
key_buff_align_size
);
SET_DATA
(
topk_value_buffer
,
int
,
value_buff_align_size
);
SET_DATA
(
select_seqs
,
int
,
select_seqs_align_size
);
SET_DATA
(
select_seq_lens
,
int
,
select_seq_lens_align_size
);
#undef SET_DATA
// init log_prob
inter_data
->
log_prob
.
data_ptr
=
log_prob_data_ptr
;
inter_data
->
log_prob
.
origin_seq_lens
=
original_lens
;
inter_data
->
log_prob
.
select_seqs
=
inter_data
->
select_seqs
.
data_ptr
();
inter_data
->
log_prob
.
select_seq_lens
=
inter_data
->
select_seq_lens
.
data_ptr
();
inter_data
->
log_prob
.
batch
=
batch_size
;
inter_data
->
log_prob
.
vocab_size
=
vocab_size
;
inter_data
->
log_prob
.
seq_len
=
seq_len
;
inter_data
->
log_prob
.
batch_stride
=
prob_strides
[
0
];
inter_data
->
log_prob
.
seq_len_stride
=
prob_strides
[
1
];
inter_data
->
log_prob
.
vocab_stride
=
prob_strides
[
2
];
inter_data
->
max_select_seq_len
=
init_log_prob_and_cal_max_select_seq_len
(
&
(
inter_data
->
log_prob
),
blid
,
threshold
,
inter_data
->
stream
);
return
{
0
,
inter_data
->
max_select_seq_len
};
}
int
prefixCTC_V2
(
InternalData
*
inter_data
,
int
blid
,
int
spid
,
int
step
,
bool
is_last_step
,
int
max_select_seq_len
)
{
LogProb
*
log_prob_struct
=
&
(
inter_data
->
log_prob
);
if
(
step
==
0
)
{
CTC_prob_first_step_V2
(
log_prob_struct
,
step
,
inter_data
->
pprev
,
inter_data
->
ptid
,
inter_data
->
clast
,
inter_data
->
clen
[
step
%
2
],
inter_data
->
clist
[
step
%
2
],
inter_data
->
beam
,
inter_data
->
ldbeam
,
inter_data
->
ldseq_len
,
inter_data
->
bs
,
inter_data
->
score
,
inter_data
->
stream
,
blid
);
}
else
{
CTC_prob_matrix_V2
(
log_prob_struct
,
step
,
inter_data
->
pprev
,
inter_data
->
ptable
,
inter_data
->
ptablen
,
inter_data
->
clast
,
inter_data
->
lc
,
inter_data
->
ldc
,
inter_data
->
beam
,
inter_data
->
ldbeam
,
inter_data
->
bs
,
blid
,
spid
,
inter_data
->
stream
);
CTC_prob_merge_V2
(
log_prob_struct
,
step
,
inter_data
->
ptable
,
inter_data
->
ptablen
,
inter_data
->
ptid
,
inter_data
->
clast
,
inter_data
->
clist
[(
step
%
2
)
^
1
],
inter_data
->
clen
[(
step
%
2
)
^
1
],
inter_data
->
lc
,
inter_data
->
ldc
,
inter_data
->
beam
,
inter_data
->
ldbeam
,
inter_data
->
ldseq_len
,
inter_data
->
bs
,
inter_data
->
stream
,
blid
);
CTC_prob_topK_V2
(
log_prob_struct
,
step
,
inter_data
->
pprev
,
inter_data
->
ptable
,
inter_data
->
ptablen
,
inter_data
->
ptid
,
inter_data
->
clast
,
inter_data
->
clen
[(
step
%
2
)
^
1
],
inter_data
->
clen
[(
step
%
2
)],
inter_data
->
clist
[(
step
%
2
)
^
1
],
inter_data
->
clist
[(
step
%
2
)],
inter_data
->
lc
,
inter_data
->
ldc
,
inter_data
->
beam
,
inter_data
->
ldbeam
,
inter_data
->
ldseq_len
,
blid
,
inter_data
->
bs
,
inter_data
->
score
,
inter_data
->
topk_key_buffer
,
inter_data
->
topk_value_buffer
,
inter_data
->
stream
,
is_last_step
);
if
(
is_last_step
)
{
// if the parity of select_seq_len is different from the
// max_select_seq_len, their clist and clen need to be copy to another
// clist and clen
CTC_copy_list_len_for_differnet_parity
(
log_prob_struct
,
step
,
max_select_seq_len
,
inter_data
->
clen
[(
step
%
2
)
^
1
],
inter_data
->
clen
[(
step
%
2
)],
inter_data
->
clist
[(
step
%
2
)
^
1
],
inter_data
->
clist
[(
step
%
2
)],
inter_data
->
bs
,
inter_data
->
beam
,
inter_data
->
ldbeam
,
inter_data
->
ldseq_len
,
inter_data
->
stream
);
}
}
return
0
;
}
std
::
uintptr_t
prefixCTC_alloc
(
std
::
uintptr_t
stream_ptr
)
{
InternalData
*
Inter_data
=
new
InternalData
;
Inter_data
->
stream
=
reinterpret_cast
<
cudaStream_t
>
(
stream_ptr
);
return
reinterpret_cast
<
std
::
uintptr_t
>
(
Inter_data
);
}
void
prefixCTC_free
(
std
::
uintptr_t
inter_data_ptr
)
{
InternalData
*
inter_data
=
reinterpret_cast
<
InternalData
*>
(
inter_data_ptr
);
delete
inter_data
;
}
int
ctc_beam_search_decoder_batch_gpu
(
InternalData
*
inter_data
,
float
*
pp
,
int
blid
,
int
spid
,
int
*
clist
,
int
*
clen
,
float
*
score
)
{
// batch_pprev: time x batch x lc
// internal_data *data = (internal_data *)data_int;
CUDA_CHECK
(
cudaMemsetAsync
(
(
inter_data
->
clast
.
data_ptr
()),
0
,
inter_data
->
clast
.
size_in_byte
(),
inter_data
->
stream
));
CUDA_CHECK
(
cudaMemsetAsync
(
(
inter_data
->
clen
[
0
].
data_ptr
()),
0
,
inter_data
->
clen
[
0
].
size_in_byte
(),
inter_data
->
stream
));
CUDA_CHECK
(
cudaMemsetAsync
(
(
inter_data
->
clen
[
1
].
data_ptr
()),
0
,
inter_data
->
clen
[
0
].
size_in_byte
(),
inter_data
->
stream
));
CUDA_CHECK
(
cudaMemsetAsync
(
(
inter_data
->
clist
[
0
].
data_ptr
()),
-
1
,
inter_data
->
clen
[
0
].
size_in_byte
(),
inter_data
->
stream
));
CUDA_CHECK
(
cudaMemsetAsync
(
(
inter_data
->
clist
[
1
].
data_ptr
()),
-
1
,
inter_data
->
clen
[
0
].
size_in_byte
(),
inter_data
->
stream
));
// ptable the table of prob for end_in_bank (bs*beam*vocab_size)
// ptablen the table of prob for no_end_in_bank(ba*beam*vocab_size)
int
step
=
0
;
while
(
step
<
inter_data
->
max_select_seq_len
)
{
bool
is_last_step
=
(
step
==
(
inter_data
->
max_select_seq_len
-
1
));
prefixCTC_V2
(
inter_data
,
blid
,
spid
,
step
,
is_last_step
,
inter_data
->
max_select_seq_len
);
step
++
;
}
CUDA_CHECK
(
cudaMemcpy2DAsync
(
clen
,
sizeof
(
int
)
*
inter_data
->
beam
,
inter_data
->
clen
[(
step
%
2
)
^
1
].
data_ptr
(),
sizeof
(
int
)
*
inter_data
->
ldbeam
,
sizeof
(
int
)
*
inter_data
->
beam
,
inter_data
->
bs
,
cudaMemcpyDeviceToHost
,
inter_data
->
stream
));
CUDA_CHECK
(
cudaMemcpy2DAsync
(
clist
,
sizeof
(
int
)
*
inter_data
->
max_select_seq_len
,
inter_data
->
clist
[(
step
%
2
)
^
1
].
data_ptr
(),
sizeof
(
int
)
*
inter_data
->
ldseq_len
,
sizeof
(
int
)
*
inter_data
->
max_select_seq_len
,
inter_data
->
beam
*
inter_data
->
bs
,
cudaMemcpyDeviceToHost
,
inter_data
->
stream
));
CUDA_CHECK
(
cudaMemcpy2DAsync
(
score
,
sizeof
(
float
)
*
inter_data
->
beam
,
inter_data
->
score
.
data_ptr
(),
sizeof
(
float
)
*
inter_data
->
ldbeam
,
sizeof
(
float
)
*
inter_data
->
beam
,
inter_data
->
bs
,
cudaMemcpyDeviceToHost
,
inter_data
->
stream
));
CUDA_CHECK
(
cudaStreamSynchronize
(
inter_data
->
stream
));
return
0
;
}
}
// namespace cu_ctc
torchaudio/csrc/cuctc/src/ctc_prefix_decoder_kernel_v2.cu
0 → 100644
View file @
ffeba11a
// Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <algorithm>
#include "ctc_fast_divmod.cuh"
#include "cub/cub.cuh"
#include "device_data_wrap.h"
#include "device_log_prob.cuh"
#include "include/ctc_prefix_decoder_host.h"
#include "bitonic_topk/warpsort_topk.cuh"
namespace
cu_ctc
{
__inline__
__device__
float
_lauguage
()
{
return
1.0
f
;
}
__inline__
__device__
float
_logprob
(
float
a
,
float
b
)
{
return
a
+
b
;
}
__inline__
__device__
float
_logsumexp
(
float
a
,
float
b
)
{
float
max_ab
=
a
>
b
?
a
:
b
;
float
neg_abs_ab
=
(
a
-
b
)
>
0
?
(
b
-
a
)
:
(
a
-
b
);
return
max_ab
+
__logf
(
1
+
__expf
(
neg_abs_ab
));
}
__inline__
__device__
bool
compare
(
int
len
,
int
*
a
,
int
*
b
)
{
for
(
int
i
=
0
;
i
<
len
;
i
++
)
if
(
a
[
i
]
!=
b
[
i
])
return
0
;
return
1
;
}
template
<
int
BLOCK_SIZE
,
int
ITEMS_PER_THREAD
,
typename
KeyT
,
typename
ValueT
,
typename
BLOCK_TOPK_FUN
,
typename
SET_KEY_VALUE_FUN
>
__device__
__forceinline__
void
block_topk_striped_wrap_with_default_key
(
KeyT
(
&
keys
)[
ITEMS_PER_THREAD
],
ValueT
(
&
values
)[
ITEMS_PER_THREAD
],
const
int
k
,
const
int
valid_count_this_block
,
const
KeyT
default_key
,
BLOCK_TOPK_FUN
&
block_topk_fun
,
SET_KEY_VALUE_FUN
&
set_key_value_fun
)
{
const
int
tx
=
threadIdx
.
x
;
#pragma unroll
for
(
int
ITEM
=
0
;
ITEM
<
ITEMS_PER_THREAD
;
++
ITEM
)
{
int
idx
=
BLOCK_SIZE
*
ITEM
+
tx
;
if
(
idx
<
valid_count_this_block
)
{
set_key_value_fun
(
keys
[
ITEM
],
values
[
ITEM
],
idx
);
}
else
{
keys
[
ITEM
]
=
default_key
;
}
}
const
int
valid_count_this_iter
=
(
valid_count_this_block
<
(
BLOCK_SIZE
*
ITEMS_PER_THREAD
))
?
valid_count_this_block
:
(
BLOCK_SIZE
*
ITEMS_PER_THREAD
);
block_topk_fun
(
keys
,
values
,
k
,
valid_count_this_iter
);
__syncthreads
();
const
int
stride
=
BLOCK_SIZE
*
ITEMS_PER_THREAD
-
k
;
for
(
int
idx_offset
=
ITEMS_PER_THREAD
*
BLOCK_SIZE
;
idx_offset
<
valid_count_this_block
;
idx_offset
+=
stride
)
{
#pragma unroll
for
(
int
ITEM
=
0
;
ITEM
<
ITEMS_PER_THREAD
;
++
ITEM
)
{
int
local_idx
=
BLOCK_SIZE
*
ITEM
+
tx
-
k
;
int
target_idx
=
idx_offset
+
local_idx
;
if
(
local_idx
>=
0
&&
target_idx
<
valid_count_this_block
)
{
set_key_value_fun
(
keys
[
ITEM
],
values
[
ITEM
],
target_idx
);
}
if
(
target_idx
>=
valid_count_this_block
)
{
keys
[
ITEM
]
=
default_key
;
}
}
const
int
iter_valid_count
=
((
valid_count_this_block
-
idx_offset
)
>=
stride
)
?
(
BLOCK_SIZE
*
ITEMS_PER_THREAD
)
:
(
k
+
valid_count_this_block
-
idx_offset
);
block_topk_fun
(
keys
,
values
,
k
,
iter_valid_count
);
__syncthreads
();
}
}
__global__
void
prob_matrix_v2_kernel
(
LogProb
log_prob_struct
,
int
step
,
float2
*
pprev
,
float
*
ptable
,
float
*
ptablen
,
int
*
clast
,
int
lc
,
int
ldc
,
int
beam
,
int
ldbeam
,
int
bs
,
int
blid
,
int
spid
)
{
const
int
batch_id
=
blockIdx
.
y
;
int
tid
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
const
int
stride
=
blockDim
.
x
*
gridDim
.
x
;
if
(
!
log_prob_struct
.
need_process_on_ith_step
(
batch_id
,
step
))
return
;
const
int
select_seq
=
log_prob_struct
.
ith_selected_seq_in_this_batch
(
batch_id
,
step
);
if
(
batch_id
>=
bs
||
tid
>=
(
lc
*
beam
))
return
;
for
(;
tid
<
(
lc
*
beam
);
tid
+=
stride
)
{
int
beamid
=
tid
/
lc
;
int
charid
=
tid
-
beamid
*
lc
;
if
((
charid
!=
blid
)
&&
charid
!=
spid
)
{
int
idout
=
charid
+
(
beamid
+
batch_id
*
beam
)
*
ldc
;
int
target_clast
=
clast
[
batch_id
*
ldbeam
+
beamid
];
float
cur_prob
=
log_prob_struct
.
at
(
batch_id
,
select_seq
,
charid
);
float
out_prob
;
float2
beamid_p
=
pprev
[
batch_id
*
ldbeam
+
beamid
];
if
(
target_clast
==
charid
)
{
out_prob
=
_logprob
(
cur_prob
,
beamid_p
.
x
);
float
out_prob_prefix
=
_logprob
(
cur_prob
,
beamid_p
.
y
);
int
idout_prefix
=
blid
+
(
batch_id
*
beam
+
beamid
)
*
ldc
;
ptablen
[
idout_prefix
]
=
out_prob_prefix
;
}
else
{
out_prob
=
_logprob
(
cur_prob
,
_logsumexp
(
beamid_p
.
x
,
beamid_p
.
y
));
}
ptable
[
idout
]
=
-
FLT_MAX
;
ptablen
[
idout
]
=
out_prob
;
}
}
}
__global__
void
prob_space_blank_kernel_v2
(
LogProb
log_prob_struct
,
int
step
,
float2
*
pprev
,
float
*
ptable
,
float
*
ptablen
,
int
*
clast
,
int
lc
,
int
ldc
,
int
beam
,
int
ldbeam
,
int
bs
,
int
blid
,
int
spid
)
{
const
int
batch_id
=
blockIdx
.
y
;
if
(
!
log_prob_struct
.
need_process_on_ith_step
(
batch_id
,
step
))
return
;
const
int
select_seq
=
log_prob_struct
.
ith_selected_seq_in_this_batch
(
batch_id
,
step
);
const
int
beamid
=
threadIdx
.
x
;
if
(
beamid
<
beam
)
{
// assume blank at 0
float
pc
=
log_prob_struct
.
at
(
batch_id
,
select_seq
,
blid
);
float2
tmpprev
=
pprev
[
batch_id
*
ldbeam
+
beamid
];
int
last_char
=
clast
[
batch_id
*
ldbeam
+
beamid
];
int
idout
=
blid
+
(
batch_id
*
beam
+
beamid
)
*
ldc
;
ptable
[
idout
]
=
_logprob
(
pc
,
_logsumexp
(
tmpprev
.
x
,
tmpprev
.
y
));
if
(
last_char
==
blid
)
ptablen
[
idout
]
=
-
FLT_MAX
;
}
if
(
spid
>=
0
&&
(
spid
!=
blid
)
&&
beamid
<
beam
)
{
float
pc
=
log_prob_struct
.
at
(
batch_id
,
select_seq
,
spid
);
float2
tmpprev
=
pprev
[
batch_id
*
ldbeam
+
beamid
];
int
idout
=
spid
+
(
batch_id
*
beam
+
beamid
)
*
ldc
;
ptablen
[
idout
]
=
_lauguage
()
*
_logprob
(
pc
,
_logsumexp
(
tmpprev
.
x
,
tmpprev
.
y
));
// logsumexp
ptable
[
idout
]
=
-
FLT_MAX
;
}
}
__global__
void
matrix_merge_kernel_v2
(
LogProb
log_prob_struct
,
int
step
,
float
*
ptable
,
float
*
ptablen
,
int
*
ptid
,
int
*
clast
,
int
*
clist
,
int
*
clen
,
int
lc
,
int
ldc
,
int
beam
,
int
ldbeam
,
int
ldseq_len
,
int
bs
,
int
blid
)
{
// not produce the "l+ not in Aprev" part. If do this, need use ptalbe(n)@t-1
// this is a little kernel & latency dependency & almost no parallel
// each thread produce one beam .vs. one beam.
// block=beam,thread=beam (if beam<32, can use one block for optim)
const
int
batch_id
=
blockIdx
.
y
;
if
(
!
log_prob_struct
.
need_process_on_ith_step
(
batch_id
,
step
))
return
;
const
int
select_seq
=
log_prob_struct
.
ith_selected_seq_in_this_batch
(
batch_id
,
step
);
__shared__
int
tmpclen
[
128
];
// beam<128
int
tidin
,
tidout
;
if
(
threadIdx
.
x
<
beam
)
{
tmpclen
[
threadIdx
.
x
]
=
clen
[
threadIdx
.
x
+
blockIdx
.
y
*
ldbeam
];
}
__syncthreads
();
if
(
threadIdx
.
x
<
beam
&&
((
tmpclen
[
threadIdx
.
x
]
-
1
)
==
tmpclen
[
blockIdx
.
x
]))
{
// char=blank && belong to the same beam @t-1; if
// not meet, the whole block will not calculate.
// delta(L)=1
if
(
compare
(
tmpclen
[
blockIdx
.
x
],
clist
+
threadIdx
.
x
*
ldseq_len
+
blockIdx
.
y
*
ldseq_len
*
beam
,
clist
+
blockIdx
.
x
*
ldseq_len
+
blockIdx
.
y
*
ldseq_len
*
beam
))
{
tidin
=
clast
[
threadIdx
.
x
+
blockIdx
.
y
*
ldbeam
]
+
(
blockIdx
.
x
+
blockIdx
.
y
*
beam
)
*
ldc
;
tidout
=
blid
+
(
threadIdx
.
x
+
blockIdx
.
y
*
beam
)
*
ldc
;
ptable
[
tidout
]
=
_logsumexp
(
ptable
[
tidout
],
ptable
[
tidin
]);
ptablen
[
tidout
]
=
_logsumexp
(
ptablen
[
tidout
],
ptablen
[
tidin
]);
ptable
[
tidin
]
=
-
FLT_MAX
;
ptablen
[
tidin
]
=
-
FLT_MAX
;
}
}
}
template
<
int
BLOCK_SIZE
,
int
Capacity
>
__global__
__launch_bounds__
(
BLOCK_SIZE
)
void
first_matrix__bitonic_topk_kernel
(
LogProb
log_prob_struct
,
int
step
,
float2
*
pprev
,
int
*
ptid
,
int
*
clast
,
int
*
clen
,
int
*
clist
,
int
beam
,
int
ldbeam
,
int
ldseq_len
,
int
blid
,
int
bs
,
float
*
score
,
int
smem_result_byte_offset
)
{
const
int
batch_id
=
blockIdx
.
x
;
const
int
tx
=
threadIdx
.
x
;
if
(
!
log_prob_struct
.
need_process_on_ith_step
(
batch_id
,
step
))
return
;
const
bool
is_need_add_blank
=
log_prob_struct
.
need_add_blank
(
batch_id
,
step
);
const
int
select_seq
=
log_prob_struct
.
ith_selected_seq_in_this_batch
(
batch_id
,
step
);
const
int
vocab_size
=
log_prob_struct
.
vocab_size
;
extern
__shared__
__align__
(
256
)
uint8_t
smem_buf_bytes
[];
constexpr
bool
Ascending
=
false
;
using
namespace
cu_ctc
::
topk
;
block_sort
<
warp_sort_filtered
,
Capacity
,
Ascending
,
float
,
int
>
queue
(
beam
,
smem_buf_bytes
);
const
int
per_thread_lim
=
vocab_size
+
laneId
();
for
(
int
id
=
tx
;
id
<
per_thread_lim
;
id
+=
BLOCK_SIZE
)
{
float
key
=
(
id
<
vocab_size
)
?
(
log_prob_struct
.
at
(
batch_id
,
select_seq
,
id
))
:
(
warp_sort_filtered
<
Capacity
,
Ascending
,
float
,
int
>::
kDummy
);
int
value
=
id
;
queue
.
add
(
key
,
value
);
}
queue
.
done
();
float
*
block_topk_key
=
reinterpret_cast
<
float
*>
(
smem_buf_bytes
+
smem_result_byte_offset
);
int
*
block_topk_value
=
reinterpret_cast
<
int
*>
(
block_topk_key
+
sizeof
(
float
)
*
beam
);
queue
.
store
(
block_topk_key
,
block_topk_value
);
for
(
int
idx
=
tx
;
idx
<
beam
;
idx
+=
BLOCK_SIZE
)
{
int
id
=
block_topk_value
[
idx
];
float
key
=
block_topk_key
[
idx
];
int
shift
=
clen
[
idx
+
batch_id
*
ldbeam
];
if
(
id
!=
blid
)
{
float2
xy
=
is_need_add_blank
?
float2
{
key
,
-
FLT_MAX
}
:
float2
{
-
FLT_MAX
,
key
};
pprev
[
batch_id
*
ldbeam
+
idx
]
=
xy
;
clist
[
batch_id
*
beam
*
ldseq_len
+
idx
*
ldseq_len
+
shift
]
=
id
;
clen
[
batch_id
*
ldbeam
+
idx
]
+=
1
;
clast
[
batch_id
*
ldbeam
+
idx
]
=
id
;
}
else
{
pprev
[
batch_id
*
ldbeam
+
idx
]
=
float2
{
key
,
-
FLT_MAX
};
}
score
[
batch_id
*
ldbeam
+
idx
]
=
key
;
}
}
template
<
int
BLOCK_SIZE
,
int
Capacity
>
__global__
__launch_bounds__
(
BLOCK_SIZE
)
void
bitonic_topk_multi_block_per_batch_kernel
(
LogProb
log_prob_struct
,
int
step
,
const
float
*
ptable
,
const
float
*
ptablen
,
int
lc
,
int
ldc
,
int
beam
,
int
bs
,
float
*
topk_key_buffer
,
int
*
topk_value_buffer
,
FastDivmod
ldc_fast_divmod
)
{
const
int
batch_id
=
blockIdx
.
y
;
if
(
batch_id
>=
bs
)
return
;
if
(
!
log_prob_struct
.
need_process_on_ith_step
(
batch_id
,
step
))
return
;
extern
__shared__
__align__
(
256
)
uint8_t
smem_buf_bytes
[];
constexpr
bool
Ascending
=
false
;
using
namespace
cu_ctc
::
topk
;
block_sort
<
warp_sort_filtered
,
Capacity
,
Ascending
,
float
,
int
>
queue
(
beam
,
smem_buf_bytes
);
const
int
bx
=
blockIdx
.
x
;
const
int
blocks_per_batch
=
gridDim
.
x
;
const
int
all_items_per_batch
=
ldc
*
beam
;
const
int
stride
=
blocks_per_batch
*
BLOCK_SIZE
;
const
int
gid
=
threadIdx
.
x
+
bx
*
BLOCK_SIZE
;
const
int
block_out_offset
=
(
batch_id
*
blocks_per_batch
+
bx
)
*
beam
;
const
int
per_thread_lim
=
all_items_per_batch
+
laneId
();
for
(
int
id
=
gid
;
id
<
per_thread_lim
;
id
+=
stride
)
{
float
key
=
warp_sort_filtered
<
Capacity
,
Ascending
,
float
,
int
>::
kDummy
;
int
value
=
id
;
if
(
id
<
all_items_per_batch
)
{
int
quotient
;
int
reminder
;
ldc_fast_divmod
(
quotient
,
reminder
,
id
);
// reminder = id%lc;
if
(
reminder
<
lc
)
{
int
tidin
=
batch_id
*
all_items_per_batch
+
id
;
float
p
=
ptable
[
tidin
];
float
pn
=
ptablen
[
tidin
];
key
=
_logsumexp
(
p
,
pn
);
}
}
queue
.
add
(
key
,
value
);
}
queue
.
done
();
queue
.
store
(
topk_key_buffer
+
block_out_offset
,
topk_value_buffer
+
block_out_offset
);
}
template
<
int
BLOCK_SIZE
,
int
ITEMS_PER_THREAD
,
int
WRITE_THREDS
=
8
>
__global__
__launch_bounds__
(
BLOCK_SIZE
)
void
topk_reduce_and_copy_list_per_batch_kernel
(
LogProb
log_prob_struct
,
int
step
,
int
beam
,
int
items_per_batch
,
int
bs
,
float
*
topk_key_buffer
,
int
*
topk_value_buffer
,
int
ldc
,
int
ldbeam
,
int
ldseq_len
,
float2
*
pprev
,
float
*
ptable
,
float
*
ptablen
,
int
*
clast
,
int
*
clen
,
int
*
clen2
,
int
*
clist
,
int
*
clist2
,
int
blid
,
float
*
score
)
{
constexpr
int
MAX_SUPPORT_BEAM
=
128
;
int
batch_id
=
blockIdx
.
x
;
int
rw_offset_this_block
=
batch_id
*
items_per_batch
;
if
(
batch_id
>=
bs
)
return
;
if
(
!
log_prob_struct
.
need_process_on_ith_step
(
batch_id
,
step
))
return
;
const
bool
is_need_add_blank
=
log_prob_struct
.
need_add_blank
(
batch_id
,
step
);
const
int
tx
=
threadIdx
.
x
;
using
BlockRadixSortT
=
cub
::
BlockRadixSort
<
float
,
BLOCK_SIZE
,
ITEMS_PER_THREAD
,
int
>
;
__shared__
union
{
typename
BlockRadixSortT
::
TempStorage
temp_storage
;
#ifdef USE_PARALLEL_WRITE
constexpr
int
smem_size
=
MAX_SUPPORT_BEAM
*
(
sizeof
(
float
)
+
sizeof
(
int
));
uint8_t
topk_key_value_smem
[
smem_size
];
#endif
/* data */
}
ShareSmem
;
float
topk_keys
[
ITEMS_PER_THREAD
];
int
topk_values
[
ITEMS_PER_THREAD
];
auto
block_topk_fun
=
[
&
](
float
(
&
keys
)[
ITEMS_PER_THREAD
],
int
(
&
values
)[
ITEMS_PER_THREAD
],
const
int
k
,
const
int
valid_count_this_iter
)
{
BlockRadixSortT
{
ShareSmem
.
temp_storage
}.
SortDescendingBlockedToStriped
(
keys
,
values
);
};
auto
set_key_value
=
[
&
](
float
&
key
,
int
&
value
,
int
idx
)
{
key
=
topk_key_buffer
[
idx
+
rw_offset_this_block
];
value
=
topk_value_buffer
[
idx
+
rw_offset_this_block
];
};
block_topk_striped_wrap_with_default_key
<
BLOCK_SIZE
,
ITEMS_PER_THREAD
,
float
,
int
>
(
topk_keys
,
topk_values
,
beam
,
items_per_batch
,
cub
::
FpLimits
<
float
>::
Lowest
(),
block_topk_fun
,
set_key_value
);
// write result in global memory
__syncthreads
();
#ifdef USE_PARALLEL_WRITE
float
*
smem_keys
=
reinterpret_cast
<
float
*>
(
&
(
ShareSmem
.
topk_key_value_smem
[
0
]));
int
*
smem_values
=
reinterpret_cast
<
int
*>
(
ShareSmem
.
topk_key_value_smem
+
MAX_SUPPORT_BEAM
*
sizeof
(
float
));
#pragma unroll
for
(
int
ITEM
=
0
;
ITEM
<
ITEMS_PER_THREAD
;
++
ITEM
)
{
int
idx
=
BLOCK_SIZE
*
ITEM
+
tx
;
if
(
idx
<
beam
)
{
smem_keys
[
idx
]
=
topk_keys
[
ITEM
];
smem_values
[
idx
]
=
topk_values
[
ITEM
];
}
}
__syncthreads
();
const
int
sub_warp_id
=
tx
/
WRITE_THREDS
;
const
int
tid_in_subw
=
tx
%
WRITE_THREDS
;
const
int
sub_warps
=
BLOCK_SIZE
/
WRITE_THREDS
;
for
(
int
out_beamid
=
sub_warp_id
;
out_beamid
<
beam
;
out_beamid
+=
sub_warps
)
{
int
id
=
smem_values
[
out_beamid
];
int
beamid
=
id
/
ldc
;
int
charid
=
id
-
beamid
*
ldc
;
// id%ldc
int
prevlen
=
clen
[
beamid
+
batch_id
*
ldbeam
];
// PARALLEL_WRITE
for
(
int
i
=
tid_in_subw
;
i
<
prevlen
;
i
+=
WRITE_THREDS
)
{
clist2
[
batch_id
*
beam
*
ldseq_len
+
out_beamid
*
ldseq_len
+
i
]
=
clist
[
batch_id
*
beam
*
ldseq_len
+
beamid
*
ldseq_len
+
i
];
}
if
(
tid_in_subw
==
0
)
{
if
(
charid
==
blid
)
{
clast
[
batch_id
*
ldbeam
+
out_beamid
]
=
clast
[
beamid
+
batch_id
*
ldbeam
];
clen2
[
batch_id
*
ldbeam
+
out_beamid
]
=
prevlen
;
}
else
{
clast
[
batch_id
*
ldbeam
+
out_beamid
]
=
charid
;
clen2
[
batch_id
*
ldbeam
+
out_beamid
]
=
prevlen
+
1
;
clist2
[
batch_id
*
beam
*
ldseq_len
+
out_beamid
*
ldseq_len
+
prevlen
]
=
charid
;
}
float2
ptable_ptablen
;
ptable_ptablen
.
x
=
ptable
[
batch_id
*
ldc
*
beam
+
id
];
ptable_ptablen
.
y
=
ptablen
[
batch_id
*
ldc
*
beam
+
id
];
float
cur_score
=
_logsumexp
(
ptable_ptablen
.
x
,
ptable_ptablen
.
y
);
score
[
batch_id
*
ldbeam
+
out_beamid
]
=
cur_score
;
float2
ptable_ptablen2
=
float2
{
cur_score
,
-
FLT_MAX
};
pprev
[
batch_id
*
ldbeam
+
out_beamid
]
=
is_need_add_blank
?
ptable_ptablen2
:
ptable_ptablen
;
}
}
#else
{
#pragma unroll
for
(
int
ITEM
=
0
;
ITEM
<
ITEMS_PER_THREAD
;
++
ITEM
)
{
int
idx
=
BLOCK_SIZE
*
ITEM
+
tx
;
if
(
idx
<
beam
)
{
int
id
=
topk_values
[
ITEM
];
int
beamid
=
id
/
ldc
;
int
charid
=
id
-
beamid
*
ldc
;
// id%ldc
int
prevlen
=
clen
[
beamid
+
batch_id
*
ldbeam
];
int
prevclast
=
clast
[
beamid
+
batch_id
*
ldbeam
];
for
(
int
i
=
0
;
i
<
prevlen
;
i
++
)
{
clist2
[
batch_id
*
beam
*
ldseq_len
+
idx
*
ldseq_len
+
i
]
=
clist
[
batch_id
*
beam
*
ldseq_len
+
beamid
*
ldseq_len
+
i
];
}
if
(
charid
==
blid
)
{
clast
[
batch_id
*
ldbeam
+
idx
]
=
prevclast
;
clen2
[
batch_id
*
ldbeam
+
idx
]
=
prevlen
;
}
else
{
clast
[
batch_id
*
ldbeam
+
idx
]
=
charid
;
clen2
[
batch_id
*
ldbeam
+
idx
]
=
prevlen
+
1
;
clist2
[
batch_id
*
beam
*
ldseq_len
+
idx
*
ldseq_len
+
prevlen
]
=
charid
;
}
float2
ptable_ptablen
;
ptable_ptablen
.
x
=
ptable
[
batch_id
*
ldc
*
beam
+
id
];
ptable_ptablen
.
y
=
ptablen
[
batch_id
*
ldc
*
beam
+
id
];
float
cur_score
=
_logsumexp
(
ptable_ptablen
.
x
,
ptable_ptablen
.
y
);
score
[
batch_id
*
ldbeam
+
idx
]
=
cur_score
;
float2
ptable_ptablen2
=
float2
{
cur_score
,
-
FLT_MAX
};
pprev
[
batch_id
*
ldbeam
+
idx
]
=
is_need_add_blank
?
ptable_ptablen2
:
ptable_ptablen
;
}
}
}
#endif
}
int
CTC_prob_matrix_V2
(
LogProb
*
log_prob_struct
,
int
step
,
float2
*
pprev
,
float
*
ptable
,
float
*
ptablen
,
int
*
clast
,
int
lc
,
int
ldc
,
int
beam
,
int
ldbeam
,
int
bs
,
int
blid
,
int
spid
,
cudaStream_t
stream
)
{
dim3
grid
,
block
;
block
.
x
=
256
,
block
.
y
=
1
,
block
.
z
=
1
;
grid
.
x
=
min
((
lc
*
beam
+
block
.
x
-
1
)
/
block
.
x
,
MAX_BLOCKS
/
bs
);
grid
.
y
=
bs
;
grid
.
z
=
1
;
prob_matrix_v2_kernel
<<<
grid
,
block
,
0
,
stream
>>>
(
(
*
log_prob_struct
),
step
,
pprev
,
ptable
,
ptablen
,
clast
,
lc
,
ldc
,
beam
,
ldbeam
,
bs
,
blid
,
spid
);
block
.
x
=
ldbeam
,
block
.
y
=
1
,
block
.
z
=
1
;
grid
.
x
=
1
,
grid
.
y
=
bs
,
grid
.
z
=
1
;
CHECK
(
ldbeam
<=
1024
,
" only support beam<=1024"
);
prob_space_blank_kernel_v2
<<<
grid
,
block
,
0
,
stream
>>>
(
(
*
log_prob_struct
),
step
,
pprev
,
ptable
,
ptablen
,
clast
,
lc
,
ldc
,
beam
,
ldbeam
,
bs
,
blid
,
spid
);
return
0
;
}
int
CTC_prob_first_step_V2
(
LogProb
*
log_prob_struct
,
int
step
,
float2
*
pprev
,
int
*
ptid
,
int
*
clast
,
int
*
clen
,
int
*
clist
,
int
beam
,
int
ldbeam
,
int
ldseq_len
,
int
bs
,
float
*
score
,
cudaStream_t
stream
,
int
blid
)
{
CHECK
(
beam
<=
128
,
"ERROR: only support beam size <=128 "
);
constexpr
int
threads_per_block
=
256
;
const
int
grid
=
bs
;
constexpr
int
Capacity
=
16
;
using
FunType
=
decltype
(
first_matrix__bitonic_topk_kernel
<
threads_per_block
,
Capacity
>
);
static
FunType
*
FirstMatrixFuns
[
5
]{
first_matrix__bitonic_topk_kernel
<
threads_per_block
,
8
>
,
first_matrix__bitonic_topk_kernel
<
threads_per_block
,
16
>
,
first_matrix__bitonic_topk_kernel
<
threads_per_block
,
32
>
,
first_matrix__bitonic_topk_kernel
<
threads_per_block
,
64
>
,
first_matrix__bitonic_topk_kernel
<
threads_per_block
,
128
>
};
int
need_capacity
=
topk
::
calc_capacity
(
beam
);
int
fun_idx
=
0
;
fun_idx
=
std
::
max
(
0
,
31
-
clz
(
need_capacity
)
-
3
);
int
actual_capacity
=
(
1
<<
(
fun_idx
+
3
));
int
num_of_subwarp
=
threads_per_block
/
std
::
min
<
int
>
(
32
,
actual_capacity
);
int
block_sort_smem_size
=
cu_ctc
::
topk
::
roundUp256
(
cu_ctc
::
topk
::
calc_smem_size_for_block_wide
<
float
,
int
>
(
num_of_subwarp
,
beam
));
int
smem_size
=
block_sort_smem_size
+
beam
*
sizeof
(
float
)
+
beam
*
sizeof
(
int
);
FirstMatrixFuns
[
fun_idx
]
<<<
grid
,
threads_per_block
,
smem_size
,
stream
>>>
(
(
*
log_prob_struct
),
step
,
pprev
,
ptid
,
clast
,
clen
,
clist
,
beam
,
ldbeam
,
ldseq_len
,
blid
,
bs
,
score
,
block_sort_smem_size
);
return
0
;
}
int
CTC_prob_merge_V2
(
LogProb
*
log_prob_struct
,
int
step
,
float
*
ptable
,
float
*
ptablen
,
int
*
ptid
,
int
*
clast
,
int
*
clist
,
int
*
clen
,
int
lc
,
int
ldc
,
int
beam
,
int
ldbeam
,
int
ldseq_len
,
int
bs
,
cudaStream_t
stream
,
int
blid
)
{
dim3
grid
,
block
;
int
smem
;
block
.
x
=
ldbeam
,
block
.
y
=
1
,
block
.
z
=
1
;
grid
.
x
=
beam
,
grid
.
y
=
bs
,
grid
.
z
=
1
;
smem
=
0
;
matrix_merge_kernel_v2
<<<
grid
,
block
,
smem
,
stream
>>>
(
(
*
log_prob_struct
),
step
,
ptable
,
ptablen
,
ptid
,
clast
,
clist
,
clen
,
lc
,
ldc
,
beam
,
ldbeam
,
ldseq_len
,
bs
,
blid
);
return
0
;
}
int
CTC_prob_topK_V2
(
LogProb
*
log_prob_struct
,
int
step
,
float2
*
pprev
,
float
*
ptable
,
float
*
ptablen
,
int
*
ptid
,
int
*
clast
,
int
*
clen
,
int
*
clen2
,
int
*
clist
,
int
*
clist2
,
int
lc
,
int
ldc
,
int
beam
,
int
ldbeam
,
int
ldseq_len
,
int
blid
,
int
bs
,
float
*
score
,
float
*
topk_key_buff
,
int
*
topk_value_buff
,
cudaStream_t
stream
,
bool
is_last_step
)
{
CHECK
(
beam
<=
128
,
"ERROR: only support beam size <=128 "
);
int
all_items_per_batch
=
ldc
*
beam
;
constexpr
int
items_per_thread0
=
4
;
// #define USE_BLOCKS_PER_BATCH 4
#ifdef USE_BLOCKS_PER_BATCH
constexpr
int
threads_per_block0
=
256
;
constexpr
int
items_per_block_per_iter0
=
threads_per_block0
*
items_per_thread0
;
int
bxs
=
min
(
USE_BLOCKS_PER_BATCH
,
(
all_items_per_batch
+
items_per_block_per_iter0
-
1
)
/
items_per_block_per_iter0
);
CHECK
(
bxs
*
bs
<=
MAX_BLOCKS
,
" ERROR: (batch_size * USE_BLOCKS_PER BATCH) should <=MAX_BLOCKS"
);
#else
int
max_bxs_per_batch
=
std
::
max
(
1
,
MAX_BLOCKS
/
bs
);
constexpr
int
MAX_BLOCKS_PER_BATCH
=
16
;
max_bxs_per_batch
=
std
::
min
(
MAX_BLOCKS_PER_BATCH
,
max_bxs_per_batch
);
constexpr
int
threads_per_block0
=
128
;
constexpr
int
items_per_block_per_iter0
=
threads_per_block0
*
items_per_thread0
;
int
bxs
=
min
(
max_bxs_per_batch
,
(
all_items_per_batch
+
items_per_block_per_iter0
-
1
)
/
items_per_block_per_iter0
);
#endif
dim3
grid
(
bxs
,
bs
);
dim3
block
(
threads_per_block0
);
FastDivmod
ldc_fast_div
{
ldc
};
constexpr
int
Capacity
=
32
;
// 8,16,32,64,128
using
FunType
=
decltype
(
bitonic_topk_multi_block_per_batch_kernel
<
threads_per_block0
,
Capacity
>
);
static
FunType
*
BitonicTopkFuns
[
5
]{
bitonic_topk_multi_block_per_batch_kernel
<
threads_per_block0
,
8
>
,
bitonic_topk_multi_block_per_batch_kernel
<
threads_per_block0
,
16
>
,
bitonic_topk_multi_block_per_batch_kernel
<
threads_per_block0
,
32
>
,
bitonic_topk_multi_block_per_batch_kernel
<
threads_per_block0
,
64
>
,
bitonic_topk_multi_block_per_batch_kernel
<
threads_per_block0
,
128
>
};
int
need_capacity
=
topk
::
calc_capacity
(
beam
);
int
fun_idx
=
0
;
fun_idx
=
std
::
max
(
0
,
31
-
clz
(
need_capacity
)
-
3
);
int
actual_capacity
=
(
1
<<
(
fun_idx
+
3
));
int
num_of_subwarp
=
threads_per_block0
/
std
::
min
<
int
>
(
32
,
actual_capacity
);
int
smem_size
=
cu_ctc
::
topk
::
calc_smem_size_for_block_wide
<
float
,
int
>
(
num_of_subwarp
,
beam
);
BitonicTopkFuns
[
fun_idx
]
<<<
grid
,
block
,
smem_size
,
stream
>>>
(
(
*
log_prob_struct
),
step
,
ptable
,
ptablen
,
lc
,
ldc
,
beam
,
bs
,
topk_key_buff
,
topk_value_buff
,
ldc_fast_div
);
constexpr
int
threads_per_block1
=
128
;
constexpr
int
items_per_thread1
=
2
;
const
int
items_per_batch
=
bxs
*
beam
;
topk_reduce_and_copy_list_per_batch_kernel
<
threads_per_block1
,
items_per_thread1
><<<
bs
,
threads_per_block1
,
0
,
stream
>>>
(
(
*
log_prob_struct
),
step
,
beam
,
items_per_batch
,
bs
,
topk_key_buff
,
topk_value_buff
,
ldc
,
ldbeam
,
ldseq_len
,
pprev
,
ptable
,
ptablen
,
clast
,
clen
,
clen2
,
clist
,
clist2
,
blid
,
score
);
return
0
;
};
template
<
int
BLOCK_SIZE
,
int
ITEMS_PT
>
__global__
void
init_log_prob_select_kernel
(
LogProb
log_prob_struct
,
int
blid
,
float
threshold
)
{
// select seqs that log_prob[blid]< threshold
int
batch_id
=
blockIdx
.
x
;
using
BlockScanT
=
cub
::
BlockScan
<
int
,
BLOCK_SIZE
>
;
__shared__
typename
BlockScanT
::
TempStorage
temp_storage
;
int
selected
[
ITEMS_PT
];
int
selected_scan
[
ITEMS_PT
];
#pragma unroll
for
(
int
ITEM
=
0
;
ITEM
<
ITEMS_PT
;
ITEM
++
)
{
selected
[
ITEM
]
=
0
;
}
const
int
tx
=
threadIdx
.
x
;
int
this_batch_seq_len
=
log_prob_struct
.
origin_seq_lens
[
batch_id
];
int
block_agg
=
0
;
for
(
int
seq_id_offset
=
0
;
seq_id_offset
<
this_batch_seq_len
;
seq_id_offset
+=
(
BLOCK_SIZE
*
ITEMS_PT
))
{
#pragma unroll
for
(
int
ITEM
=
0
;
ITEM
<
ITEMS_PT
;
ITEM
++
)
{
int
seq_id
=
seq_id_offset
+
ITEMS_PT
*
tx
+
ITEM
;
if
(
seq_id
<
this_batch_seq_len
)
{
selected
[
ITEM
]
=
(
log_prob_struct
.
at
(
batch_id
,
seq_id
,
blid
)
<
threshold
)
?
1
:
0
;
}
else
{
selected
[
ITEM
]
=
0
;
}
}
__syncthreads
();
int
block_agg_this_iter
=
0
;
BlockScanT
{
temp_storage
}.
ExclusiveSum
(
selected
,
selected_scan
,
block_agg_this_iter
);
__syncthreads
();
#pragma unroll
for
(
int
ITEM
=
0
;
ITEM
<
ITEMS_PT
;
ITEM
++
)
{
int
seq_id
=
seq_id_offset
+
ITEMS_PT
*
tx
+
ITEM
;
if
(
selected
[
ITEM
])
{
log_prob_struct
.
select_seqs
[
batch_id
*
log_prob_struct
.
seq_len
+
selected_scan
[
ITEM
]
+
block_agg
]
=
seq_id
;
}
}
block_agg
+=
block_agg_this_iter
;
}
if
(
tx
==
0
)
{
log_prob_struct
.
select_seq_lens
[
batch_id
]
=
block_agg
;
}
}
int
init_log_prob_and_cal_max_select_seq_len
(
LogProb
*
log_prob_struct
,
int
blid
,
float
threshold
,
cudaStream_t
stream
)
{
constexpr
int
BLOCK_SIZE
=
128
;
constexpr
int
ITEMS_PT
=
4
;
int
bxs
=
log_prob_struct
->
batch
;
init_log_prob_select_kernel
<
BLOCK_SIZE
,
ITEMS_PT
>
<<<
bxs
,
BLOCK_SIZE
,
0
,
stream
>>>
((
*
log_prob_struct
),
blid
,
threshold
);
// for simplicity , find max_select_seq_len on cpu
std
::
vector
<
int
>
select_seq_lens
(
bxs
);
CUDA_CHECK
(
cudaMemcpyAsync
(
select_seq_lens
.
data
(),
log_prob_struct
->
select_seq_lens
,
sizeof
(
int
)
*
bxs
,
cudaMemcpyDeviceToHost
,
stream
));
CUDA_CHECK
(
cudaStreamSynchronize
(
stream
));
int
ret_max_select_seq_len
=
*
std
::
max_element
(
select_seq_lens
.
begin
(),
select_seq_lens
.
end
());
return
ret_max_select_seq_len
;
}
// if the parity of select_seq_len is different from the max_select_seq_len,
// their clist and clen need to be copy to another clist and clen
template
<
int
SUB_WARP_SIZE
,
int
BLOCK_SIZE
>
__global__
void
copy_list_len_for_diff_parity_kernel
(
LogProb
log_prob_struct
,
int
step
,
int
max_select_seq_len
,
int
*
clen
,
int
*
clen2
,
int
*
clist
,
int
*
clist2
,
int
bs
,
int
beam
,
int
ldbeam
,
int
ldseq_len
)
{
const
int
batch_id
=
blockIdx
.
y
;
if
(
batch_id
>=
bs
)
return
;
int
select_seq_len
=
log_prob_struct
.
select_seq_lens
[
batch_id
];
if
((
select_seq_len
&
1
)
==
(
max_select_seq_len
&
1
))
return
;
const
int
bx
=
blockIdx
.
x
;
constexpr
int
beams_per_block
=
BLOCK_SIZE
/
SUB_WARP_SIZE
;
const
int
tx
=
threadIdx
.
x
;
const
int
sub_warp_id
=
tx
/
SUB_WARP_SIZE
;
const
int
tid_in_sub_warp
=
tx
%
SUB_WARP_SIZE
;
const
int
beamid
=
bx
*
beams_per_block
+
sub_warp_id
;
if
(
beamid
>=
beam
)
return
;
int
new_len
=
clen
[
batch_id
*
ldbeam
+
beamid
];
if
(
tid_in_sub_warp
==
0
)
{
clen2
[
batch_id
*
ldbeam
+
beamid
]
=
new_len
;
}
for
(
int
id
=
tid_in_sub_warp
;
id
<
new_len
;
id
+=
SUB_WARP_SIZE
)
{
clist2
[
batch_id
*
beam
*
ldseq_len
+
beamid
*
ldseq_len
+
id
]
=
clist
[
batch_id
*
beam
*
ldseq_len
+
beamid
*
ldseq_len
+
id
];
}
}
__global__
void
copy_list_len_for_diff_parity_simple_kernel
(
LogProb
log_prob_struct
,
int
step
,
int
max_select_seq_len
,
int
*
clen
,
int
*
clen2
,
int
*
clist
,
int
*
clist2
,
int
bs
,
int
beam
,
int
ldbeam
,
int
ldseq_len
)
{
const
int
batch_id
=
blockIdx
.
x
;
if
(
batch_id
>=
bs
)
return
;
int
select_seq_len
=
log_prob_struct
.
select_seq_lens
[
batch_id
];
if
((
select_seq_len
&
1
)
==
(
max_select_seq_len
&
1
))
return
;
const
int
tx
=
threadIdx
.
x
;
for
(
int
beamid
=
tx
;
beamid
<
beam
;
beamid
+=
blockDim
.
x
)
{
int
new_len
=
clen
[
batch_id
*
ldbeam
+
beamid
];
clen2
[
batch_id
*
ldbeam
+
beamid
]
=
new_len
;
for
(
int
i
=
0
;
i
<
new_len
;
i
++
)
{
clist2
[
batch_id
*
beam
*
ldseq_len
+
beamid
*
ldseq_len
+
i
]
=
clist
[
batch_id
*
beam
*
ldseq_len
+
beamid
*
ldseq_len
+
i
];
}
}
}
int
CTC_copy_list_len_for_differnet_parity
(
LogProb
*
log_prob_struct
,
int
step
,
int
max_select_seq_len
,
int
*
clen
,
int
*
clen2
,
int
*
clist
,
int
*
clist2
,
int
bs
,
int
beam
,
int
ldbeam
,
int
ldseq_len
,
cudaStream_t
stream
)
{
constexpr
int
SUB_WARP_SIZE
=
8
;
constexpr
int
BLOCK_SIZE
=
256
;
const
int
beams_per_block
=
BLOCK_SIZE
/
SUB_WARP_SIZE
;
const
int
bxs
=
(
beam
+
beams_per_block
-
1
)
/
beams_per_block
;
dim3
blocks_this_grid
;
blocks_this_grid
.
x
=
bxs
;
blocks_this_grid
.
y
=
bs
;
blocks_this_grid
.
z
=
1
;
copy_list_len_for_diff_parity_kernel
<
SUB_WARP_SIZE
,
BLOCK_SIZE
>
<<<
blocks_this_grid
,
BLOCK_SIZE
,
0
,
stream
>>>
(
(
*
log_prob_struct
),
step
,
max_select_seq_len
,
clen
,
clen2
,
clist
,
clist2
,
bs
,
beam
,
ldbeam
,
ldseq_len
);
return
0
;
}
}
// namespace cu_ctc
torchaudio/csrc/cuctc/src/device_data_wrap.h
0 → 100644
View file @
ffeba11a
// Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
#include <iostream>
#include <vector>
#include "include/ctc_prefix_decoder_host.h"
namespace
cu_ctc
{
constexpr
size_t
ALIGN_BYTES
=
128
;
constexpr
int
MAX_BLOCKS
=
800
;
template
<
typename
T
>
class
DeviceDataWrap
{
public:
DeviceDataWrap
()
:
data_
{},
size_in_bytes_
{}
{};
DeviceDataWrap
(
T
*
data_ptr
,
size_t
size_in_byte
)
:
data_
{
data_ptr
},
size_in_bytes_
{
size_in_byte
}
{};
void
print
(
size_t
offset
,
size_t
size_in_element
,
int
eles_per_row
=
10
)
const
{
if
((
offset
+
size_in_element
)
*
sizeof
(
T
)
>
size_in_bytes_
)
{
std
::
cerr
<<
" ERROR: in DeviceDataWrap print : offset+size_in_element > size_in_bytes_"
;
abort
();
}
std
::
vector
<
T
>
host_data
(
size_in_element
);
CUDA_CHECK
(
cudaMemcpy
(
host_data
.
data
(),
data_
+
offset
,
size_in_element
*
sizeof
(
T
),
cudaMemcpyDeviceToHost
));
for
(
int
i
=
0
;
i
<
size_in_element
;
++
i
)
{
if
(
i
!=
0
&&
(
i
%
eles_per_row
==
0
))
{
std
::
cout
<<
"
\n
"
;
}
std
::
cout
<<
"["
<<
i
<<
"]:"
<<
host_data
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
}
operator
T
*
()
{
return
data_
;
}
operator
const
T
*
()
{
return
const_cast
<
const
T
*>
(
data_
);
}
T
*
data_ptr
()
const
{
return
data_
;
}
size_t
size_in_byte
()
const
{
return
size_in_bytes_
;
}
void
set_data_ptr
(
T
*
data_ptr
)
{
data_
=
data_ptr
;
}
void
set_size_in_byte
(
size_t
size_in_byte
)
{
size_in_bytes_
=
size_in_byte
;
}
private:
T
*
data_
;
size_t
size_in_bytes_
;
};
}
// namespace cu_ctc
torchaudio/csrc/cuctc/src/device_log_prob.cuh
0 → 100644
View file @
ffeba11a
// Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma once
namespace
cu_ctc
{
struct
LogProb
{
float
*
data_ptr
;
int
batch
;
int
seq_len
;
int
vocab_size
;
int
batch_stride
;
int
seq_len_stride
;
int
vocab_stride
;
int
*
origin_seq_lens
;
// batchs
int
*
select_seqs
;
// batchs *seq_len;
int
*
select_seq_lens
;
// batchs
__device__
__forceinline__
float
at
(
int
batch_id
,
int
seq_id
,
int
char_id
)
{
return
data_ptr
[
batch_id
*
batch_stride
+
seq_id
*
seq_len_stride
+
char_id
*
vocab_stride
];
}
__device__
__forceinline__
int
ith_selected_seq_in_this_batch
(
int
batch_id
,
int
i
)
{
return
select_seqs
[
batch_id
*
seq_len
+
i
];
}
__device__
__forceinline__
bool
need_process_on_ith_step
(
int
batch_id
,
int
istep
)
{
return
istep
<
select_seq_lens
[
batch_id
];
}
/**
* @brief if the prob of blank in next original timestep > threshold , we
* will not process the next original timestep, but will process the
* subsequent blank on the currently processed timestep.
*
* @param batch_id
* @param istep
* @return __device__
*/
__device__
__forceinline__
bool
need_add_blank
(
int
batch_id
,
int
istep
)
{
if
((
istep
<
0
)
||
(
istep
+
1
)
>=
select_seq_lens
[
batch_id
])
{
return
false
;
}
if
((
ith_selected_seq_in_this_batch
(
batch_id
,
istep
+
1
)
-
ith_selected_seq_in_this_batch
(
batch_id
,
istep
))
>
1
)
{
return
true
;
}
return
false
;
}
};
}
// namespace cu_ctc
torchaudio/csrc/cuctc/src/python_binding.cpp
0 → 100644
View file @
ffeba11a
// Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <tuple>
#include <utility>
#include <vector>
#include "include/ctc_prefix_decoder.h"
namespace
py
=
pybind11
;
std
::
tuple
<
size_t
,
std
::
vector
<
std
::
vector
<
std
::
pair
<
float
,
std
::
vector
<
int
>>>>>
ctc_prefix_decoder_batch_wrapper
(
std
::
uintptr_t
n_inter_data
,
std
::
uintptr_t
buff_ptr
,
size_t
buff_size
,
std
::
uintptr_t
pp
,
std
::
uintptr_t
seq_len_ptr
,
const
std
::
vector
<
int
>&
pp_sizes
,
const
std
::
vector
<
int
>&
pp_strides
,
int
beam
,
int
blid
,
int
spid
,
float
thresold
)
{
using
SCORE_TYPE
=
std
::
vector
<
std
::
vector
<
std
::
pair
<
float
,
std
::
vector
<
int
>>>>
;
cu_ctc
::
InternalData
*
inter_data
=
(
cu_ctc
::
InternalData
*
)(
n_inter_data
);
auto
[
require_size
,
max_select_seq_len
]
=
cu_ctc
::
calculate_require_buff_and_init_internal_data
(
inter_data
,
pp_sizes
[
0
],
pp_sizes
[
1
],
pp_sizes
[
2
],
beam
,
buff_ptr
,
buff_size
,
(
float
*
)
pp
,
(
int
*
)
seq_len_ptr
,
pp_sizes
,
pp_strides
,
blid
,
thresold
);
if
(
require_size
>
0
)
{
return
std
::
make_tuple
(
require_size
,
SCORE_TYPE
{});
}
int
batch_size
=
pp_sizes
[
0
];
std
::
vector
<
int
>
list_data
(
batch_size
*
beam
*
max_select_seq_len
);
std
::
vector
<
int
>
len_data
(
batch_size
*
beam
);
std
::
vector
<
float
>
score
(
batch_size
*
beam
);
cu_ctc
::
ctc_beam_search_decoder_batch_gpu
(
inter_data
,
(
float
*
)
pp
,
blid
,
spid
,
list_data
.
data
(),
len_data
.
data
(),
score
.
data
());
SCORE_TYPE
score_hyps
{};
score_hyps
.
reserve
(
batch_size
);
for
(
int
b
=
0
;
b
<
batch_size
;
b
++
)
{
score_hyps
.
push_back
(
std
::
vector
<
std
::
pair
<
float
,
std
::
vector
<
int
>>>
{});
score_hyps
.
back
().
reserve
(
beam
);
for
(
int
beam_id
=
0
;
beam_id
<
beam
;
beam_id
++
)
{
int
len
=
len_data
[
b
*
beam
+
beam_id
];
int
offset
=
b
*
beam
*
max_select_seq_len
+
beam_id
*
max_select_seq_len
;
std
::
vector
<
int
>
clist
(
list_data
.
data
()
+
offset
,
list_data
.
data
()
+
offset
+
len
);
score_hyps
.
back
().
push_back
(
std
::
pair
{
score
[
b
*
beam
+
beam_id
],
std
::
move
(
clist
)});
}
}
return
std
::
make_tuple
(
require_size
,
std
::
move
(
score_hyps
));
}
PYBIND11_MODULE
(
pybind11_prefixctc
,
m
)
{
m
.
doc
()
=
"none"
;
m
.
def
(
"ctc_beam_search_decoder_batch_gpu_v2"
,
&
ctc_prefix_decoder_batch_wrapper
,
"ctc prefix decoder v2 computing on GPU"
);
m
.
def
(
"prefixCTC_alloc"
,
&
cu_ctc
::
prefixCTC_alloc
,
"allocate internal data"
);
m
.
def
(
"prefixCTC_free"
,
&
cu_ctc
::
prefixCTC_free
,
"free internal data"
);
}
torchaudio/csrc/ffmpeg/CMakeLists.txt
0 → 100644
View file @
ffeba11a
set
(
sources
ffmpeg.cpp
filter_graph.cpp
hw_context.cpp
stream_reader/buffer/chunked_buffer.cpp
stream_reader/buffer/unchunked_buffer.cpp
stream_reader/conversion.cpp
stream_reader/packet_buffer.cpp
stream_reader/post_process.cpp
stream_reader/stream_processor.cpp
stream_reader/stream_reader.cpp
stream_writer/encode_process.cpp
stream_writer/encoder.cpp
stream_writer/packet_writer.cpp
stream_writer/stream_writer.cpp
stream_writer/tensor_converter.cpp
compat.cpp
)
set
(
ext_sources
pybind/pybind.cpp
)
if
(
USE_CUDA
)
set
(
additional_lib
cuda_deps
)
endif
()
if
(
TARGET ffmpeg
)
torchaudio_library
(
libtorchaudio_ffmpeg
"
${
sources
}
"
""
"torch;ffmpeg;
${
additional_lib
}
"
""
)
if
(
BUILD_TORCHAUDIO_PYTHON_EXTENSION
)
torchaudio_extension
(
_torchaudio_ffmpeg
"
${
ext_sources
}
"
""
"libtorchaudio_ffmpeg"
"TORCHAUDIO_FFMPEG_EXT_NAME=_torchaudio_ffmpeg"
)
endif
()
else
()
torchaudio_library
(
libtorchaudio_ffmpeg4
"
${
sources
}
"
""
"torch;ffmpeg4;
${
additional_lib
}
"
""
)
torchaudio_library
(
libtorchaudio_ffmpeg5
"
${
sources
}
"
""
"torch;ffmpeg5;
${
additional_lib
}
"
""
)
torchaudio_library
(
libtorchaudio_ffmpeg6
"
${
sources
}
"
""
"torch;ffmpeg6;
${
additional_lib
}
"
""
)
if
(
BUILD_TORCHAUDIO_PYTHON_EXTENSION
)
torchaudio_extension
(
_torchaudio_ffmpeg4
"
${
ext_sources
}
"
""
"libtorchaudio_ffmpeg4"
"TORCHAUDIO_FFMPEG_EXT_NAME=_torchaudio_ffmpeg4"
)
torchaudio_extension
(
_torchaudio_ffmpeg5
"
${
ext_sources
}
"
""
"libtorchaudio_ffmpeg5"
"TORCHAUDIO_FFMPEG_EXT_NAME=_torchaudio_ffmpeg5"
)
torchaudio_extension
(
_torchaudio_ffmpeg6
"
${
ext_sources
}
"
""
"libtorchaudio_ffmpeg6"
"TORCHAUDIO_FFMPEG_EXT_NAME=_torchaudio_ffmpeg6"
)
endif
()
endif
()
torchaudio/csrc/ffmpeg/compat.cpp
0 → 100644
View file @
ffeba11a
#include <torch/script.h>
#include <torchaudio/csrc/ffmpeg/stream_reader/stream_reader.h>
#include <stdexcept>
namespace
torchaudio
{
namespace
io
{
namespace
{
torch
::
Tensor
_load_audio
(
StreamReader
&
s
,
int
i
,
const
c10
::
optional
<
std
::
string
>&
filter
,
const
bool
&
channels_first
)
{
s
.
add_audio_stream
(
i
,
-
1
,
-
1
,
filter
,
{},
{});
s
.
process_all_packets
();
auto
chunk
=
s
.
pop_chunks
()[
0
];
TORCH_CHECK
(
chunk
,
"Failed to decode audio."
);
auto
waveform
=
chunk
.
value
().
frames
;
return
channels_first
?
waveform
.
transpose
(
0
,
1
)
:
waveform
;
}
std
::
tuple
<
torch
::
Tensor
,
int64_t
>
load
(
const
std
::
string
&
src
,
const
c10
::
optional
<
std
::
string
>&
format
,
const
c10
::
optional
<
std
::
string
>&
filter
,
const
bool
&
channels_first
)
{
StreamReader
s
{
src
,
format
,
{}};
auto
i
=
s
.
find_best_audio_stream
();
auto
sample_rate
=
s
.
get_src_stream_info
(
i
).
sample_rate
;
auto
waveform
=
_load_audio
(
s
,
i
,
filter
,
channels_first
);
return
{
waveform
,
sample_rate
};
}
std
::
tuple
<
int64_t
,
int64_t
,
int64_t
,
int64_t
,
std
::
string
>
info
(
const
std
::
string
&
src
,
const
c10
::
optional
<
std
::
string
>&
format
)
{
StreamReader
s
{
src
,
format
,
{}};
auto
i
=
s
.
find_best_audio_stream
();
auto
sinfo
=
s
.
get_src_stream_info
(
i
);
int64_t
num_frames
=
[
&
]()
{
if
(
sinfo
.
num_frames
==
0
)
{
torch
::
Tensor
waveform
=
_load_audio
(
s
,
i
,
{},
false
);
return
waveform
.
size
(
0
);
}
return
sinfo
.
num_frames
;
}();
return
{
static_cast
<
int64_t
>
(
sinfo
.
sample_rate
),
static_cast
<
int64_t
>
(
num_frames
),
static_cast
<
int64_t
>
(
sinfo
.
num_channels
),
static_cast
<
int64_t
>
(
sinfo
.
bits_per_sample
),
sinfo
.
codec_name
};
}
TORCH_LIBRARY_FRAGMENT
(
torchaudio
,
m
)
{
m
.
def
(
"torchaudio::compat_load"
,
&
load
);
m
.
def
(
"torchaudio::compat_info"
,
&
info
);
}
}
// namespace
}
// namespace io
}
// namespace torchaudio
torchaudio/csrc/ffmpeg/ffmpeg.cpp
View file @
ffeba11a
...
@@ -5,8 +5,7 @@
...
@@ -5,8 +5,7 @@
#include <string>
#include <string>
#include <vector>
#include <vector>
namespace
torchaudio
{
namespace
torchaudio
::
io
{
namespace
ffmpeg
{
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// AVDictionary
// AVDictionary
...
@@ -14,8 +13,8 @@ namespace ffmpeg {
...
@@ -14,8 +13,8 @@ namespace ffmpeg {
AVDictionary
*
get_option_dict
(
const
c10
::
optional
<
OptionDict
>&
option
)
{
AVDictionary
*
get_option_dict
(
const
c10
::
optional
<
OptionDict
>&
option
)
{
AVDictionary
*
opt
=
nullptr
;
AVDictionary
*
opt
=
nullptr
;
if
(
option
)
{
if
(
option
)
{
for
(
const
auto
&
it
:
option
.
value
())
{
for
(
auto
const
&
[
key
,
value
]
:
option
.
value
())
{
av_dict_set
(
&
opt
,
it
.
key
()
.
c_str
(),
it
.
value
()
.
c_str
(),
0
);
av_dict_set
(
&
opt
,
key
.
c_str
(),
value
.
c_str
(),
0
);
}
}
}
}
return
opt
;
return
opt
;
...
@@ -73,16 +72,13 @@ void AVPacketDeleter::operator()(AVPacket* p) {
...
@@ -73,16 +72,13 @@ void AVPacketDeleter::operator()(AVPacket* p) {
av_packet_free
(
&
p
);
av_packet_free
(
&
p
);
};
};
namespace
{
AVPacketPtr
::
AVPacketPtr
(
AVPacket
*
p
)
:
Wrapper
<
AVPacket
,
AVPacketDeleter
>
(
p
)
{}
AVPacket
*
get_av_packet
()
{
AVPacket
*
pPacket
=
av_packet_alloc
();
TORCH_CHECK
(
pPacket
,
"Failed to allocate AVPacket object."
);
return
pPacket
;
}
}
// namespace
AVPacketPtr
::
AVPacketPtr
()
AVPacketPtr
alloc_avpacket
()
{
:
Wrapper
<
AVPacket
,
AVPacketDeleter
>
(
get_av_packet
())
{}
AVPacket
*
p
=
av_packet_alloc
();
TORCH_CHECK
(
p
,
"Failed to allocate AVPacket object."
);
return
AVPacketPtr
{
p
};
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// AVPacket - buffer unref
// AVPacket - buffer unref
...
@@ -101,15 +97,14 @@ AutoPacketUnref::operator AVPacket*() const {
...
@@ -101,15 +97,14 @@ AutoPacketUnref::operator AVPacket*() const {
void
AVFrameDeleter
::
operator
()(
AVFrame
*
p
)
{
void
AVFrameDeleter
::
operator
()(
AVFrame
*
p
)
{
av_frame_free
(
&
p
);
av_frame_free
(
&
p
);
};
};
namespace
{
AVFrame
*
get_av_frame
()
{
AVFrame
*
pFrame
=
av_frame_alloc
();
TORCH_CHECK
(
pFrame
,
"Failed to allocate AVFrame object."
);
return
pFrame
;
}
}
// namespace
AVFramePtr
::
AVFramePtr
()
:
Wrapper
<
AVFrame
,
AVFrameDeleter
>
(
get_av_frame
())
{}
AVFramePtr
::
AVFramePtr
(
AVFrame
*
p
)
:
Wrapper
<
AVFrame
,
AVFrameDeleter
>
(
p
)
{}
AVFramePtr
alloc_avframe
()
{
AVFrame
*
p
=
av_frame_alloc
();
TORCH_CHECK
(
p
,
"Failed to allocate AVFrame object."
);
return
AVFramePtr
{
p
};
};
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// AVCodecContext
// AVCodecContext
...
@@ -128,15 +123,8 @@ void AutoBufferUnref::operator()(AVBufferRef* p) {
...
@@ -128,15 +123,8 @@ void AutoBufferUnref::operator()(AVBufferRef* p) {
av_buffer_unref
(
&
p
);
av_buffer_unref
(
&
p
);
}
}
AVBufferRefPtr
::
AVBufferRefPtr
()
AVBufferRefPtr
::
AVBufferRefPtr
(
AVBufferRef
*
p
)
:
Wrapper
<
AVBufferRef
,
AutoBufferUnref
>
(
nullptr
)
{}
:
Wrapper
<
AVBufferRef
,
AutoBufferUnref
>
(
p
)
{}
void
AVBufferRefPtr
::
reset
(
AVBufferRef
*
p
)
{
TORCH_CHECK
(
!
ptr
,
"InternalError: A valid AVBufferRefPtr is being reset. Please file an issue."
);
ptr
.
reset
(
p
);
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// AVFilterGraph
// AVFilterGraph
...
@@ -145,18 +133,17 @@ void AVFilterGraphDeleter::operator()(AVFilterGraph* p) {
...
@@ -145,18 +133,17 @@ void AVFilterGraphDeleter::operator()(AVFilterGraph* p) {
avfilter_graph_free
(
&
p
);
avfilter_graph_free
(
&
p
);
};
};
namespace
{
AVFilterGraphPtr
::
AVFilterGraphPtr
(
AVFilterGraph
*
p
)
AVFilterGraph
*
get_filter_graph
()
{
:
Wrapper
<
AVFilterGraph
,
AVFilterGraphDeleter
>
(
p
)
{}
AVFilterGraph
*
ptr
=
avfilter_graph_alloc
();
TORCH_CHECK
(
ptr
,
"Failed to allocate resouce."
);
return
ptr
;
}
}
// namespace
AVFilterGraphPtr
::
AVFilterGraphPtr
()
:
Wrapper
<
AVFilterGraph
,
AVFilterGraphDeleter
>
(
get_filter_graph
())
{}
void
AVFilterGraphPtr
::
reset
()
{
////////////////////////////////////////////////////////////////////////////////
ptr
.
reset
(
get_filter_graph
());
// AVCodecParameters
////////////////////////////////////////////////////////////////////////////////
void
AVCodecParametersDeleter
::
operator
()(
AVCodecParameters
*
codecpar
)
{
avcodec_parameters_free
(
&
codecpar
);
}
}
}
// namespace ffmpeg
}
// namespace torchaudio
AVCodecParametersPtr
::
AVCodecParametersPtr
(
AVCodecParameters
*
p
)
:
Wrapper
<
AVCodecParameters
,
AVCodecParametersDeleter
>
(
p
)
{}
}
// namespace torchaudio::io
torchaudio/csrc/ffmpeg/ffmpeg.h
View file @
ffeba11a
// One stop header for all ffmepg needs
// One stop header for all ffmepg needs
#pragma once
#pragma once
#include <torch/t
orch
.h>
#include <torch/t
ypes
.h>
#include <cstdint>
#include <cstdint>
#include <map>
#include <map>
#include <memory>
#include <memory>
...
@@ -22,10 +22,12 @@ extern "C" {
...
@@ -22,10 +22,12 @@ extern "C" {
#include <libavutil/pixdesc.h>
#include <libavutil/pixdesc.h>
}
}
/// @cond
namespace
torchaudio
{
namespace
torchaudio
{
namespace
ffmpeg
{
namespace
io
{
using
OptionDict
=
c10
::
Dict
<
std
::
string
,
std
::
string
>
;
using
OptionDict
=
std
::
map
<
std
::
string
,
std
::
string
>
;
// https://github.com/FFmpeg/FFmpeg/blob/4e6debe1df7d53f3f59b37449b82265d5c08a172/doc/APIchanges#L252-L260
// https://github.com/FFmpeg/FFmpeg/blob/4e6debe1df7d53f3f59b37449b82265d5c08a172/doc/APIchanges#L252-L260
// Starting from libavformat 59 (ffmpeg 5),
// Starting from libavformat 59 (ffmpeg 5),
...
@@ -52,7 +54,6 @@ av_always_inline std::string av_err2string(int errnum) {
...
@@ -52,7 +54,6 @@ av_always_inline std::string av_err2string(int errnum) {
// The resource allocation will be provided by custom constructors.
// The resource allocation will be provided by custom constructors.
template
<
typename
T
,
typename
Deleter
>
template
<
typename
T
,
typename
Deleter
>
class
Wrapper
{
class
Wrapper
{
protected:
std
::
unique_ptr
<
T
,
Deleter
>
ptr
;
std
::
unique_ptr
<
T
,
Deleter
>
ptr
;
public:
public:
...
@@ -121,9 +122,11 @@ struct AVPacketDeleter {
...
@@ -121,9 +122,11 @@ struct AVPacketDeleter {
};
};
struct
AVPacketPtr
:
public
Wrapper
<
AVPacket
,
AVPacketDeleter
>
{
struct
AVPacketPtr
:
public
Wrapper
<
AVPacket
,
AVPacketDeleter
>
{
AVPacketPtr
();
explicit
AVPacketPtr
(
AVPacket
*
p
);
};
};
AVPacketPtr
alloc_avpacket
();
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// AVPacket - buffer unref
// AVPacket - buffer unref
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
...
@@ -150,9 +153,11 @@ struct AVFrameDeleter {
...
@@ -150,9 +153,11 @@ struct AVFrameDeleter {
};
};
struct
AVFramePtr
:
public
Wrapper
<
AVFrame
,
AVFrameDeleter
>
{
struct
AVFramePtr
:
public
Wrapper
<
AVFrame
,
AVFrameDeleter
>
{
AVFramePtr
();
explicit
AVFramePtr
(
AVFrame
*
p
);
};
};
AVFramePtr
alloc_avframe
();
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// AutoBufferUnrer is responsible for performing unref at the end of lifetime
// AutoBufferUnrer is responsible for performing unref at the end of lifetime
// of AVBufferRefPtr.
// of AVBufferRefPtr.
...
@@ -162,8 +167,7 @@ struct AutoBufferUnref {
...
@@ -162,8 +167,7 @@ struct AutoBufferUnref {
};
};
struct
AVBufferRefPtr
:
public
Wrapper
<
AVBufferRef
,
AutoBufferUnref
>
{
struct
AVBufferRefPtr
:
public
Wrapper
<
AVBufferRef
,
AutoBufferUnref
>
{
AVBufferRefPtr
();
explicit
AVBufferRefPtr
(
AVBufferRef
*
p
);
void
reset
(
AVBufferRef
*
p
);
};
};
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
...
@@ -184,8 +188,27 @@ struct AVFilterGraphDeleter {
...
@@ -184,8 +188,27 @@ struct AVFilterGraphDeleter {
void
operator
()(
AVFilterGraph
*
p
);
void
operator
()(
AVFilterGraph
*
p
);
};
};
struct
AVFilterGraphPtr
:
public
Wrapper
<
AVFilterGraph
,
AVFilterGraphDeleter
>
{
struct
AVFilterGraphPtr
:
public
Wrapper
<
AVFilterGraph
,
AVFilterGraphDeleter
>
{
AVFilterGraphPtr
();
explicit
AVFilterGraphPtr
(
AVFilterGraph
*
p
);
void
reset
();
};
////////////////////////////////////////////////////////////////////////////////
// AVCodecParameters
////////////////////////////////////////////////////////////////////////////////
struct
AVCodecParametersDeleter
{
void
operator
()(
AVCodecParameters
*
p
);
};
struct
AVCodecParametersPtr
:
public
Wrapper
<
AVCodecParameters
,
AVCodecParametersDeleter
>
{
explicit
AVCodecParametersPtr
(
AVCodecParameters
*
p
);
};
};
}
// namespace ffmpeg
struct
StreamParams
{
AVCodecParametersPtr
codec_params
{
nullptr
};
AVRational
time_base
{};
int
stream_index
{};
};
}
// namespace io
}
// namespace torchaudio
}
// namespace torchaudio
/// @endcond
torchaudio/csrc/ffmpeg/filter_graph.cpp
View file @
ffeba11a
#include <torchaudio/csrc/ffmpeg/filter_graph.h>
#include <torchaudio/csrc/ffmpeg/filter_graph.h>
#include <stdexcept>
#include <stdexcept>
namespace
torchaudio
{
namespace
torchaudio
::
io
{
namespace
ffmpeg
{
FilterGraph
::
FilterGraph
(
AVMediaType
media_type
)
:
media_type
(
media_type
)
{
namespace
{
switch
(
media_type
)
{
AVFilterGraph
*
get_filter_graph
()
{
case
AVMEDIA_TYPE_AUDIO
:
AVFilterGraph
*
ptr
=
avfilter_graph_alloc
();
case
AVMEDIA_TYPE_VIDEO
:
TORCH_CHECK
(
ptr
,
"Failed to allocate resouce."
);
break
;
ptr
->
nb_threads
=
1
;
default:
return
ptr
;
TORCH_CHECK
(
false
,
"Only audio and video type is supported."
);
}
}
}
}
// namespace
FilterGraph
::
FilterGraph
()
:
graph
(
get_filter_graph
())
{}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Configuration methods
// Configuration methods
...
@@ -39,6 +39,7 @@ std::string get_audio_src_args(
...
@@ -39,6 +39,7 @@ std::string get_audio_src_args(
std
::
string
get_video_src_args
(
std
::
string
get_video_src_args
(
AVPixelFormat
format
,
AVPixelFormat
format
,
AVRational
time_base
,
AVRational
time_base
,
AVRational
frame_rate
,
int
width
,
int
width
,
int
height
,
int
height
,
AVRational
sample_aspect_ratio
)
{
AVRational
sample_aspect_ratio
)
{
...
@@ -46,12 +47,14 @@ std::string get_video_src_args(
...
@@ -46,12 +47,14 @@ std::string get_video_src_args(
std
::
snprintf
(
std
::
snprintf
(
args
,
args
,
sizeof
(
args
),
sizeof
(
args
),
"video_size=%dx%d:pix_fmt=%s:time_base=%d/%d:pixel_aspect=%d/%d"
,
"video_size=%dx%d:pix_fmt=%s:time_base=%d/%d:
frame_rate=%d/%d:
pixel_aspect=%d/%d"
,
width
,
width
,
height
,
height
,
av_get_pix_fmt_name
(
format
),
av_get_pix_fmt_name
(
format
),
time_base
.
num
,
time_base
.
num
,
time_base
.
den
,
time_base
.
den
,
frame_rate
.
num
,
frame_rate
.
den
,
sample_aspect_ratio
.
num
,
sample_aspect_ratio
.
num
,
sample_aspect_ratio
.
den
);
sample_aspect_ratio
.
den
);
return
std
::
string
(
args
);
return
std
::
string
(
args
);
...
@@ -64,41 +67,43 @@ void FilterGraph::add_audio_src(
...
@@ -64,41 +67,43 @@ void FilterGraph::add_audio_src(
AVRational
time_base
,
AVRational
time_base
,
int
sample_rate
,
int
sample_rate
,
uint64_t
channel_layout
)
{
uint64_t
channel_layout
)
{
TORCH_CHECK
(
add_src
(
media_type
==
AVMEDIA_TYPE_AUDIO
,
"The filter graph is not audio type."
);
avfilter_get_by_name
(
"abuffer"
),
std
::
string
args
=
get_audio_src_args
(
format
,
time_base
,
sample_rate
,
channel_layout
));
get_audio_src_args
(
format
,
time_base
,
sample_rate
,
channel_layout
);
add_src
(
args
);
}
}
void
FilterGraph
::
add_video_src
(
void
FilterGraph
::
add_video_src
(
AVPixelFormat
format
,
AVPixelFormat
format
,
AVRational
time_base
,
AVRational
time_base
,
AVRational
frame_rate
,
int
width
,
int
width
,
int
height
,
int
height
,
AVRational
sample_aspect_ratio
)
{
AVRational
sample_aspect_ratio
)
{
TORCH_CHECK
(
add_src
(
media_type
==
AVMEDIA_TYPE_VIDEO
,
"The filter graph is not video type."
);
avfilter_get_by_name
(
"buffer"
),
std
::
string
args
=
get_video_src_args
(
get_video_src_args
(
format
,
time_base
,
width
,
height
,
sample_aspect_ratio
);
format
,
time_base
,
frame_rate
,
width
,
height
,
sample_aspect_ratio
));
add_src
(
args
);
}
}
void
FilterGraph
::
add_src
(
const
std
::
string
&
args
)
{
void
FilterGraph
::
add_src
(
const
AVFilter
*
buffersrc
,
const
std
::
string
&
args
)
{
const
AVFilter
*
buffersrc
=
avfilter_get_by_name
(
media_type
==
AVMEDIA_TYPE_AUDIO
?
"abuffer"
:
"buffer"
);
int
ret
=
avfilter_graph_create_filter
(
int
ret
=
avfilter_graph_create_filter
(
&
buffersrc_ctx
,
buffersrc
,
"in"
,
args
.
c_str
(),
NULL
,
pFilterG
raph
);
&
buffersrc_ctx
,
buffersrc
,
"in"
,
args
.
c_str
(),
nullptr
,
g
raph
);
TORCH_CHECK
(
TORCH_CHECK
(
ret
>=
0
,
ret
>=
0
,
"Failed to create input filter:
\"
"
+
args
+
"
\"
("
+
av_err2string
(
ret
)
+
"Failed to create input filter:
\"
"
+
args
+
"
\"
("
+
av_err2string
(
ret
)
+
")"
);
")"
);
}
}
void
FilterGraph
::
add_sink
()
{
void
FilterGraph
::
add_audio_sink
()
{
add_sink
(
avfilter_get_by_name
(
"abuffersink"
));
}
void
FilterGraph
::
add_video_sink
()
{
add_sink
(
avfilter_get_by_name
(
"buffersink"
));
}
void
FilterGraph
::
add_sink
(
const
AVFilter
*
buffersink
)
{
TORCH_CHECK
(
!
buffersink_ctx
,
"Sink buffer is already allocated."
);
TORCH_CHECK
(
!
buffersink_ctx
,
"Sink buffer is already allocated."
);
const
AVFilter
*
buffersink
=
avfilter_get_by_name
(
media_type
==
AVMEDIA_TYPE_AUDIO
?
"abuffersink"
:
"buffersink"
);
// Note
// Note
// Originally, the code here followed the example
// Originally, the code here followed the example
// https://ffmpeg.org/doxygen/4.1/filtering_audio_8c-example.html
// https://ffmpeg.org/doxygen/4.1/filtering_audio_8c-example.html
...
@@ -109,7 +114,7 @@ void FilterGraph::add_sink() {
...
@@ -109,7 +114,7 @@ void FilterGraph::add_sink() {
// https://ffmpeg.org/doxygen/4.1/filter_audio_8c-example.html
// https://ffmpeg.org/doxygen/4.1/filter_audio_8c-example.html
// `abuffersink` should not take options, and this resolved issue.
// `abuffersink` should not take options, and this resolved issue.
int
ret
=
avfilter_graph_create_filter
(
int
ret
=
avfilter_graph_create_filter
(
&
buffersink_ctx
,
buffersink
,
"out"
,
nullptr
,
nullptr
,
pFilterG
raph
);
&
buffersink_ctx
,
buffersink
,
"out"
,
nullptr
,
nullptr
,
g
raph
);
TORCH_CHECK
(
ret
>=
0
,
"Failed to create output filter."
);
TORCH_CHECK
(
ret
>=
0
,
"Failed to create output filter."
);
}
}
...
@@ -151,7 +156,7 @@ void FilterGraph::add_process(const std::string& filter_description) {
...
@@ -151,7 +156,7 @@ void FilterGraph::add_process(const std::string& filter_description) {
InOuts
in
{
"in"
,
buffersrc_ctx
},
out
{
"out"
,
buffersink_ctx
};
InOuts
in
{
"in"
,
buffersrc_ctx
},
out
{
"out"
,
buffersink_ctx
};
int
ret
=
avfilter_graph_parse_ptr
(
int
ret
=
avfilter_graph_parse_ptr
(
pFilterG
raph
,
filter_description
.
c_str
(),
out
,
in
,
nullptr
);
g
raph
,
filter_description
.
c_str
(),
out
,
in
,
nullptr
);
TORCH_CHECK
(
TORCH_CHECK
(
ret
>=
0
,
ret
>=
0
,
...
@@ -159,14 +164,69 @@ void FilterGraph::add_process(const std::string& filter_description) {
...
@@ -159,14 +164,69 @@ void FilterGraph::add_process(const std::string& filter_description) {
av_err2string
(
ret
)
+
".)"
);
av_err2string
(
ret
)
+
".)"
);
}
}
void
FilterGraph
::
create_filter
()
{
void
FilterGraph
::
create_filter
(
AVBufferRef
*
hw_frames_ctx
)
{
int
ret
=
avfilter_graph_config
(
pFilterGraph
,
nullptr
);
buffersrc_ctx
->
outputs
[
0
]
->
hw_frames_ctx
=
hw_frames_ctx
;
int
ret
=
avfilter_graph_config
(
graph
,
nullptr
);
TORCH_CHECK
(
ret
>=
0
,
"Failed to configure the graph: "
+
av_err2string
(
ret
));
TORCH_CHECK
(
ret
>=
0
,
"Failed to configure the graph: "
+
av_err2string
(
ret
));
// char* desc = avfilter_graph_dump(
pFilterGraph.get()
, NULL);
// char* desc = avfilter_graph_dump(
graph
, NULL);
// std::cerr << "Filter created:\n" << desc << std::endl;
// std::cerr << "Filter created:\n" << desc << std::endl;
// av_free(static_cast<void*>(desc));
// av_free(static_cast<void*>(desc));
}
}
//////////////////////////////////////////////////////////////////////////////
// Query methods
//////////////////////////////////////////////////////////////////////////////
FilterGraphOutputInfo
FilterGraph
::
get_output_info
()
const
{
TORCH_INTERNAL_ASSERT
(
buffersink_ctx
,
"FilterGraph is not initialized."
);
AVFilterLink
*
l
=
buffersink_ctx
->
inputs
[
0
];
FilterGraphOutputInfo
ret
{};
ret
.
type
=
l
->
type
;
ret
.
format
=
l
->
format
;
ret
.
time_base
=
l
->
time_base
;
switch
(
l
->
type
)
{
case
AVMEDIA_TYPE_AUDIO
:
{
ret
.
sample_rate
=
l
->
sample_rate
;
#if LIBAVFILTER_VERSION_MAJOR >= 8 && LIBAVFILTER_VERSION_MINOR >= 44
ret
.
num_channels
=
l
->
ch_layout
.
nb_channels
;
#else
// Before FFmpeg 5.1
ret
.
num_channels
=
av_get_channel_layout_nb_channels
(
l
->
channel_layout
);
#endif
break
;
}
case
AVMEDIA_TYPE_VIDEO
:
{
// If this is CUDA, retrieve the software pixel format from HW frames
// context.
if
(
l
->
format
==
AV_PIX_FMT_CUDA
)
{
// Originally, we were expecting that filter graph would propagate the
// HW frames context, so that we can retrieve it from the sink link.
// However, this is sometimes not the case.
// We do not know what is causing this behavior (GPU? libavfilter?
// format?) we resort to the source link in such case.
//
// (Technically, filters like scale_cuda could change the pixel format.
// We expect that hw_frames_ctx is propagated in such cases, but we do
// not know.
// TODO: check how scale_cuda interferes.
auto
frames_ctx
=
[
&
]()
->
AVHWFramesContext
*
{
if
(
l
->
hw_frames_ctx
)
{
return
(
AVHWFramesContext
*
)(
l
->
hw_frames_ctx
->
data
);
}
return
(
AVHWFramesContext
*
)(
buffersrc_ctx
->
outputs
[
0
]
->
hw_frames_ctx
->
data
);
}();
ret
.
format
=
frames_ctx
->
sw_format
;
}
ret
.
frame_rate
=
l
->
frame_rate
;
ret
.
height
=
l
->
h
;
ret
.
width
=
l
->
w
;
break
;
}
default:
;
}
return
ret
;
}
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// Streaming process
// Streaming process
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
...
@@ -179,5 +239,4 @@ int FilterGraph::get_frame(AVFrame* pOutputFrame) {
...
@@ -179,5 +239,4 @@ int FilterGraph::get_frame(AVFrame* pOutputFrame) {
return
av_buffersink_get_frame
(
buffersink_ctx
,
pOutputFrame
);
return
av_buffersink_get_frame
(
buffersink_ctx
,
pOutputFrame
);
}
}
}
// namespace ffmpeg
}
// namespace torchaudio::io
}
// namespace torchaudio
Prev
1
…
12
13
14
15
16
17
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment