Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
f720aec0
Unverified
Commit
f720aec0
authored
Sep 06, 2019
by
Vincent QB
Committed by
GitHub
Sep 06, 2019
Browse files
lint. (#266)
parent
962c6b0f
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
84 additions
and
41 deletions
+84
-41
examples/interactive_asr/vad.py
examples/interactive_asr/vad.py
+2
-7
examples/test/test_interactive_asr.py
examples/test/test_interactive_asr.py
+82
-33
torchaudio/datasets/vctk.py
torchaudio/datasets/vctk.py
+0
-1
No files found.
examples/interactive_asr/vad.py
View file @
f720aec0
...
@@ -19,18 +19,16 @@ from speech to silence or vice versa.
...
@@ -19,18 +19,16 @@ from speech to silence or vice versa.
from
collections
import
deque
from
collections
import
deque
import
librosa
import
numpy
as
np
import
numpy
as
np
import
torch
import
torch
from
six.moves
import
queue
import
librosa
import
pyaudio
import
pyaudio
import
torchaudio
import
torchaudio
from
six.moves
import
queue
def
compute_spectral_flatness
(
frame
,
epsilon
=
0.01
):
def
compute_spectral_flatness
(
frame
,
epsilon
=
0.01
):
n
=
frame
.
nonzero
().
size
(
0
)
# epsilon protects against log(0)
# epsilon protects against log(0)
geometric_mean
=
torch
.
exp
((
frame
+
epsilon
).
log
().
mean
(
-
1
))
-
epsilon
geometric_mean
=
torch
.
exp
((
frame
+
epsilon
).
log
().
mean
(
-
1
))
-
epsilon
arithmetic_mean
=
frame
.
mean
(
-
1
)
arithmetic_mean
=
frame
.
mean
(
-
1
)
...
@@ -240,8 +238,6 @@ def get_microphone_chunks(
...
@@ -240,8 +238,6 @@ def get_microphone_chunks(
):
):
vad
=
VoiceActivityDetection
()
vad
=
VoiceActivityDetection
()
speech_frames
=
[]
chunks
=
[]
cumulated
=
[]
cumulated
=
[]
precumulated
=
deque
(
maxlen
=
precumulate
)
precumulated
=
deque
(
maxlen
=
precumulate
)
...
@@ -250,7 +246,6 @@ def get_microphone_chunks(
...
@@ -250,7 +246,6 @@ def get_microphone_chunks(
audio_generator
=
stream
.
generator
()
audio_generator
=
stream
.
generator
()
chunk_length
=
stream
.
_chunk
chunk_length
=
stream
.
_chunk
waveform
=
torch
.
zeros
(
max_to_visualize
*
chunk_length
)
waveform
=
torch
.
zeros
(
max_to_visualize
*
chunk_length
)
speechform
=
torch
.
zeros
(
max_to_visualize
*
chunk_length
)
for
chunk
in
audio_generator
:
for
chunk
in
audio_generator
:
# Is speech?
# Is speech?
...
...
examples/test/test_interactive_asr.py
View file @
f720aec0
...
@@ -11,44 +11,93 @@ class ASRTest(unittest.TestCase):
...
@@ -11,44 +11,93 @@ class ASRTest(unittest.TestCase):
logger
.
setLevel
(
logging
.
INFO
)
logger
.
setLevel
(
logging
.
INFO
)
arguments_dict
=
{
arguments_dict
=
{
'path'
:
'/scratch/jamarshon/downloads/model.pt'
,
"path"
:
"/scratch/jamarshon/downloads/model.pt"
,
'input_file'
:
'/scratch/jamarshon/audio/examples/interactive_asr/data/sample.wav'
,
"input_file"
:
"/scratch/jamarshon/audio/examples/interactive_asr/data/sample.wav"
,
'data'
:
'/scratch/jamarshon/downloads'
,
"data"
:
"/scratch/jamarshon/downloads"
,
'user_dir'
:
'/scratch/jamarshon/fairseq-py/examples/speech_recognition'
,
"user_dir"
:
"/scratch/jamarshon/fairseq-py/examples/speech_recognition"
,
'no_progress_bar'
:
False
,
'log_interval'
:
1000
,
'log_format'
:
None
,
"no_progress_bar"
:
False
,
'tensorboard_logdir'
:
''
,
'tbmf_wrapper'
:
False
,
'seed'
:
1
,
'cpu'
:
True
,
"log_interval"
:
1000
,
'fp16'
:
False
,
'memory_efficient_fp16'
:
False
,
'fp16_init_scale'
:
128
,
"log_format"
:
None
,
'fp16_scale_window'
:
None
,
'fp16_scale_tolerance'
:
0.0
,
"tensorboard_logdir"
:
""
,
'min_loss_scale'
:
0.0001
,
'threshold_loss_scale'
:
None
,
"tbmf_wrapper"
:
False
,
'criterion'
:
'cross_entropy'
,
'tokenizer'
:
None
,
'bpe'
:
None
,
'optimizer'
:
"seed"
:
1
,
'nag'
,
'lr_scheduler'
:
'fixed'
,
'task'
:
'speech_recognition'
,
'num_workers'
:
0
,
"cpu"
:
True
,
'skip_invalid_size_inputs_valid_test'
:
False
,
'max_tokens'
:
10000000
,
"fp16"
:
False
,
'max_sentences'
:
None
,
'required_batch_size_multiple'
:
8
,
'dataset_impl'
:
None
,
"memory_efficient_fp16"
:
False
,
'gen_subset'
:
'test'
,
'num_shards'
:
1
,
'shard_id'
:
0
,
"fp16_init_scale"
:
128
,
'remove_bpe'
:
None
,
'quiet'
:
False
,
'model_overrides'
:
'{}'
,
"fp16_scale_window"
:
None
,
'results_path'
:
None
,
'beam'
:
40
,
'nbest'
:
1
,
'max_len_a'
:
0
,
"fp16_scale_tolerance"
:
0.0
,
'max_len_b'
:
200
,
'min_len'
:
1
,
'match_source_len'
:
False
,
"min_loss_scale"
:
0.0001
,
'no_early_stop'
:
False
,
'unnormalized'
:
False
,
'no_beamable_mm'
:
False
,
"threshold_loss_scale"
:
None
,
'lenpen'
:
1
,
'unkpen'
:
0
,
'replace_unk'
:
None
,
'sacrebleu'
:
False
,
"criterion"
:
"cross_entropy"
,
'score_reference'
:
False
,
'prefix_size'
:
0
,
'no_repeat_ngram_size'
:
0
,
"tokenizer"
:
None
,
'sampling'
:
False
,
'sampling_topk'
:
-
1
,
'sampling_topp'
:
-
1.0
,
"bpe"
:
None
,
'temperature'
:
1.0
,
'diverse_beam_groups'
:
-
1
,
'diverse_beam_strength'
:
0.5
,
"optimizer"
:
"nag"
,
'print_alignment'
:
False
,
'ctc'
:
False
,
"lr_scheduler"
:
"fixed"
,
'rnnt'
:
False
,
'kspmodel'
:
None
,
'wfstlm'
:
None
,
'rnnt_decoding_type'
:
'greedy'
,
"task"
:
"speech_recognition"
,
'lm_weight'
:
0.2
,
'rnnt_len_penalty'
:
-
0.5
,
'momentum'
:
0.99
,
'weight_decay'
:
0.0
,
"num_workers"
:
0
,
'force_anneal'
:
None
,
'lr_shrink'
:
0.1
,
'warmup_updates'
:
0
}
"skip_invalid_size_inputs_valid_test"
:
False
,
"max_tokens"
:
10000000
,
arguments_dict
[
'path'
]
=
os
.
environ
.
get
(
'ASR_MODEL_PATH'
,
None
)
"max_sentences"
:
None
,
arguments_dict
[
'input_file'
]
=
os
.
environ
.
get
(
'ASR_INPUT_FILE'
,
None
)
"required_batch_size_multiple"
:
8
,
arguments_dict
[
'data'
]
=
os
.
environ
.
get
(
'ASR_DATA_PATH'
,
None
)
"dataset_impl"
:
None
,
arguments_dict
[
'user_dir'
]
=
os
.
environ
.
get
(
'ASR_USER_DIR'
,
None
)
"gen_subset"
:
"test"
,
"num_shards"
:
1
,
"shard_id"
:
0
,
"remove_bpe"
:
None
,
"quiet"
:
False
,
"model_overrides"
:
"{}"
,
"results_path"
:
None
,
"beam"
:
40
,
"nbest"
:
1
,
"max_len_a"
:
0
,
"max_len_b"
:
200
,
"min_len"
:
1
,
"match_source_len"
:
False
,
"no_early_stop"
:
False
,
"unnormalized"
:
False
,
"no_beamable_mm"
:
False
,
"lenpen"
:
1
,
"unkpen"
:
0
,
"replace_unk"
:
None
,
"sacrebleu"
:
False
,
"score_reference"
:
False
,
"prefix_size"
:
0
,
"no_repeat_ngram_size"
:
0
,
"sampling"
:
False
,
"sampling_topk"
:
-
1
,
"sampling_topp"
:
-
1.0
,
"temperature"
:
1.0
,
"diverse_beam_groups"
:
-
1
,
"diverse_beam_strength"
:
0.5
,
"print_alignment"
:
False
,
"ctc"
:
False
,
"rnnt"
:
False
,
"kspmodel"
:
None
,
"wfstlm"
:
None
,
"rnnt_decoding_type"
:
"greedy"
,
"lm_weight"
:
0.2
,
"rnnt_len_penalty"
:
-
0.5
,
"momentum"
:
0.99
,
"weight_decay"
:
0.0
,
"force_anneal"
:
None
,
"lr_shrink"
:
0.1
,
"warmup_updates"
:
0
,
}
arguments_dict
[
"path"
]
=
os
.
environ
.
get
(
"ASR_MODEL_PATH"
,
None
)
arguments_dict
[
"input_file"
]
=
os
.
environ
.
get
(
"ASR_INPUT_FILE"
,
None
)
arguments_dict
[
"data"
]
=
os
.
environ
.
get
(
"ASR_DATA_PATH"
,
None
)
arguments_dict
[
"user_dir"
]
=
os
.
environ
.
get
(
"ASR_USER_DIR"
,
None
)
args
=
argparse
.
Namespace
(
**
arguments_dict
)
args
=
argparse
.
Namespace
(
**
arguments_dict
)
def
test_transcribe_file
(
self
):
def
test_transcribe_file
(
self
):
task
,
generator
,
models
,
sp
,
tgt_dict
=
setup_asr
(
self
.
args
,
self
.
logger
)
task
,
generator
,
models
,
sp
,
tgt_dict
=
setup_asr
(
self
.
args
,
self
.
logger
)
_
,
transcription
=
transcribe_file
(
self
.
args
,
task
,
generator
,
models
,
sp
,
tgt_dict
)
_
,
transcription
=
transcribe_file
(
self
.
args
,
task
,
generator
,
models
,
sp
,
tgt_dict
)
expected_transcription
=
[[
'
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
'
]]
expected_transcription
=
[[
"
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
"
]]
self
.
assertEqual
(
transcription
,
expected_transcription
,
msg
=
str
(
transcription
))
self
.
assertEqual
(
transcription
,
expected_transcription
,
msg
=
str
(
transcription
))
...
...
torchaudio/datasets/vctk.py
View file @
f720aec0
...
@@ -53,7 +53,6 @@ def read_audio(fp, downsample=True):
...
@@ -53,7 +53,6 @@ def read_audio(fp, downsample=True):
def
load_txts
(
dir
):
def
load_txts
(
dir
):
"""Create a dictionary with all the text of the audio transcriptions."""
"""Create a dictionary with all the text of the audio transcriptions."""
utterences
=
dict
()
utterences
=
dict
()
txts
=
[]
dir
=
os
.
path
.
expanduser
(
dir
)
dir
=
os
.
path
.
expanduser
(
dir
)
for
target
in
sorted
(
os
.
listdir
(
dir
)):
for
target
in
sorted
(
os
.
listdir
(
dir
)):
d
=
os
.
path
.
join
(
dir
,
target
)
d
=
os
.
path
.
join
(
dir
,
target
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment