Commit d62875cc authored by John Reese's avatar John Reese Committed by Facebook GitHub Bot
Browse files

[codemod][usort] apply import merging for fbcode (8 of 11)

Summary:
Applies new import merging and sorting from µsort v1.0.

When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.

Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.

For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting

Reviewed By: lisroach

Differential Revision: D36402214

fbshipit-source-id: b641bfa9d46242188524d4ae2c44998922a62b4c
parent 44f4a5ea
......@@ -11,7 +11,7 @@ from argparse import ArgumentParser, RawTextHelpFormatter
import torch
import torchaudio
from common import MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_TEDLIUM3, MODEL_TYPE_MUSTC
from common import MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_MUSTC, MODEL_TYPE_TEDLIUM3
from librispeech.lightning import LibriSpeechRNNTModule
from mustc.lightning import MuSTCRNNTModule
from tedlium3.lightning import TEDLIUM3RNNTModule
......
......@@ -14,8 +14,8 @@ import torch
import torchaudio
from common import (
MODEL_TYPE_LIBRISPEECH,
MODEL_TYPE_TEDLIUM3,
MODEL_TYPE_MUSTC,
MODEL_TYPE_TEDLIUM3,
piecewise_linear_log,
spectrogram_transform,
)
......
......@@ -7,16 +7,16 @@ import torch
import torchaudio
from common import (
Batch,
batch_by_token_count,
FunctionalModule,
GlobalStatsNormalization,
WarmupLR,
batch_by_token_count,
piecewise_linear_log,
post_process_hypos,
spectrogram_transform,
WarmupLR,
)
from pytorch_lightning import LightningModule
from torchaudio.models import RNNTBeamSearch, emformer_rnnt_base
from torchaudio.models import emformer_rnnt_base, RNNTBeamSearch
class CustomDataset(torch.utils.data.Dataset):
......
......@@ -6,16 +6,16 @@ import torch
import torchaudio
from common import (
Batch,
batch_by_token_count,
FunctionalModule,
GlobalStatsNormalization,
WarmupLR,
batch_by_token_count,
piecewise_linear_log,
post_process_hypos,
spectrogram_transform,
WarmupLR,
)
from pytorch_lightning import LightningModule
from torchaudio.models import RNNTBeamSearch, emformer_rnnt_base
from torchaudio.models import emformer_rnnt_base, RNNTBeamSearch
from .dataset import MUSTC
......
......@@ -15,9 +15,11 @@ import torch
import torchaudio
from common import MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_MUSTC, MODEL_TYPE_TEDLIUM3
from mustc.dataset import MUSTC
from torchaudio.pipelines import EMFORMER_RNNT_BASE_LIBRISPEECH
from torchaudio.pipelines import RNNTBundle
from torchaudio.prototype.pipelines import EMFORMER_RNNT_BASE_MUSTC, EMFORMER_RNNT_BASE_TEDLIUM3
from torchaudio.pipelines import EMFORMER_RNNT_BASE_LIBRISPEECH, RNNTBundle
from torchaudio.prototype.pipelines import (
EMFORMER_RNNT_BASE_MUSTC,
EMFORMER_RNNT_BASE_TEDLIUM3,
)
logger = logging.getLogger(__name__)
......
......@@ -7,16 +7,16 @@ import torch
import torchaudio
from common import (
Batch,
batch_by_token_count,
FunctionalModule,
GlobalStatsNormalization,
WarmupLR,
batch_by_token_count,
piecewise_linear_log,
post_process_hypos,
spectrogram_transform,
WarmupLR,
)
from pytorch_lightning import LightningModule
from torchaudio.models import RNNTBeamSearch, emformer_rnnt_base
from torchaudio.models import emformer_rnnt_base, RNNTBeamSearch
class CustomDataset(torch.utils.data.Dataset):
......
......@@ -3,7 +3,7 @@ import logging
import pathlib
from argparse import ArgumentParser
from common import MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_TEDLIUM3, MODEL_TYPE_MUSTC
from common import MODEL_TYPE_LIBRISPEECH, MODEL_TYPE_MUSTC, MODEL_TYPE_TEDLIUM3
from librispeech.lightning import LibriSpeechRNNTModule
from mustc.lightning import MuSTCRNNTModule
from pytorch_lightning import Trainer
......
......@@ -9,7 +9,7 @@ from data_module import LibriSpeechDataModule
from pytorch_lightning import LightningModule
from torchaudio.models import Hypothesis, RNNTBeamSearch
from torchaudio.prototype.models import conformer_rnnt_base
from transforms import Batch, TrainTransform, ValTransform, TestTransform
from transforms import Batch, TestTransform, TrainTransform, ValTransform
logger = logging.getLogger()
......
......@@ -2,8 +2,8 @@ import pathlib
from argparse import ArgumentParser
from lightning import ConformerRNNTModule, get_data_module
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from pytorch_lightning.plugins import DDPPlugin
......
......@@ -4,7 +4,7 @@ from typing import Optional
import torch
import torchaudio
from torchaudio.prototype.ctc_decoder import lexicon_decoder, download_pretrained_files
from torchaudio.prototype.ctc_decoder import download_pretrained_files, lexicon_decoder
logger = logging.getLogger(__name__)
......
from .hubert_dataset import (
BucketizeBatchSampler,
CollateFnHubert,
HuBERTDataSet,
)
from .hubert_dataset import BucketizeBatchSampler, CollateFnHubert, HuBERTDataSet
__all__ = [
......
......@@ -11,12 +11,7 @@ from argparse import ArgumentParser, RawTextHelpFormatter
from pathlib import Path
import torch
from utils import (
create_tsv,
dump_features,
learn_kmeans,
get_km_label,
)
from utils import create_tsv, dump_features, get_km_label, learn_kmeans
def _init_logger(debug=False):
......
from .common_utils import create_tsv
from .feature_utils import dump_features
from .kmeans import learn_kmeans, get_km_label
from .kmeans import get_km_label, learn_kmeans
__all__ = [
"create_tsv",
......
......@@ -9,10 +9,7 @@ Data pre-processing: create tsv files for training (and valiation).
import logging
import re
from pathlib import Path
from typing import (
Tuple,
Union,
)
from typing import Tuple, Union
import torch
import torchaudio
......
......@@ -5,11 +5,7 @@
# https://github.com/pytorch/fairseq/blob/265df7144c79446f5ea8d835bda6e727f54dad9d/LICENSE
import logging
from pathlib import Path
from typing import (
Optional,
Tuple,
Union,
)
from typing import Optional, Tuple, Union
import torch
import torchaudio
......
......@@ -5,9 +5,7 @@
# https://github.com/pytorch/fairseq/blob/265df7144c79446f5ea8d835bda6e727f54dad9d/LICENSE
import logging
from pathlib import Path
from typing import (
Tuple,
)
from typing import Tuple
import joblib
import torch
......
......@@ -13,7 +13,12 @@ import datetime as dt
import logging
from fairseq import options
from interactive_asr.utils import add_asr_eval_argument, setup_asr, get_microphone_transcription, transcribe_file
from interactive_asr.utils import (
add_asr_eval_argument,
get_microphone_transcription,
setup_asr,
transcribe_file,
)
def main(args):
......
......@@ -13,7 +13,7 @@ import sentencepiece as spm
import torch
import torchaudio
from fairseq import tasks
from fairseq.utils import load_ensemble_for_inference, import_user_module
from fairseq.utils import import_user_module, load_ensemble_for_inference
from interactive_asr.vad import get_microphone_chunks
......
......@@ -25,7 +25,7 @@
#
# *****************************************************************************
from typing import Tuple, Callable, List
from typing import Callable, List, Tuple
import torch
from torch import Tensor
......
......@@ -13,13 +13,12 @@ import torch
import torchaudio
from datasets import InverseSpectralNormalization
from text.text_preprocessing import (
available_symbol_set,
available_phonemizers,
available_symbol_set,
get_symbol_list,
text_to_sequence,
)
from torchaudio.models import Tacotron2
from torchaudio.models import tacotron2 as pretrained_tacotron2
from torchaudio.models import Tacotron2, tacotron2 as pretrained_tacotron2
from utils import prepare_input_sequence
......@@ -27,8 +26,12 @@ def parse_args():
r"""
Parse commandline arguments.
"""
from torchaudio.models.tacotron2 import _MODEL_CONFIG_AND_URLS as tacotron2_config_and_urls
from torchaudio.models.wavernn import _MODEL_CONFIG_AND_URLS as wavernn_config_and_urls
from torchaudio.models.tacotron2 import (
_MODEL_CONFIG_AND_URLS as tacotron2_config_and_urls,
)
from torchaudio.models.wavernn import (
_MODEL_CONFIG_AND_URLS as wavernn_config_and_urls,
)
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment