"git@developer.sourcefind.cn:OpenDAS/torchaudio.git" did not exist on "93cc6da7771baf4c7beae0b6373efbe9dc16485d"
Commit d62875cc authored by John Reese's avatar John Reese Committed by Facebook GitHub Bot
Browse files

[codemod][usort] apply import merging for fbcode (8 of 11)

Summary:
Applies new import merging and sorting from µsort v1.0.

When merging imports, µsort will make a best-effort to move associated
comments to match merged elements, but there are known limitations due to
the diynamic nature of Python and developer tooling. These changes should
not produce any dangerous runtime changes, but may require touch-ups to
satisfy linters and other tooling.

Note that µsort uses case-insensitive, lexicographical sorting, which
results in a different ordering compared to isort. This provides a more
consistent sorting order, matching the case-insensitive order used when
sorting import statements by module name, and ensures that "frog", "FROG",
and "Frog" always sort next to each other.

For details on µsort's sorting and merging semantics, see the user guide:
https://usort.readthedocs.io/en/stable/guide.html#sorting

Reviewed By: lisroach

Differential Revision: D36402214

fbshipit-source-id: b641bfa9d46242188524d4ae2c44998922a62b4c
parent 44f4a5ea
...@@ -5,9 +5,9 @@ from unittest.mock import patch ...@@ -5,9 +5,9 @@ from unittest.mock import patch
import torch import torch
from parameterized import parameterized from parameterized import parameterized
from torchaudio._internal.module_utils import is_module_available from torchaudio._internal.module_utils import is_module_available
from torchaudio_unittest.common_utils import TorchaudioTestCase, skipIfNoModule from torchaudio_unittest.common_utils import skipIfNoModule, TorchaudioTestCase
from .utils import MockSentencePieceProcessor, MockCustomDataset, MockDataloader from .utils import MockCustomDataset, MockDataloader, MockSentencePieceProcessor
if is_module_available("pytorch_lightning", "sentencepiece"): if is_module_available("pytorch_lightning", "sentencepiece"):
from asr.emformer_rnnt.tedlium3.lightning import TEDLIUM3RNNTModule from asr.emformer_rnnt.tedlium3.lightning import TEDLIUM3RNNTModule
......
...@@ -2,11 +2,11 @@ import os ...@@ -2,11 +2,11 @@ import os
from source_separation.utils.dataset import wsj0mix from source_separation.utils.dataset import wsj0mix
from torchaudio_unittest.common_utils import ( from torchaudio_unittest.common_utils import (
TempDirMixin,
TorchaudioTestCase,
get_whitenoise, get_whitenoise,
save_wav,
normalize_wav, normalize_wav,
save_wav,
TempDirMixin,
TorchaudioTestCase,
) )
......
...@@ -2,9 +2,9 @@ import torch ...@@ -2,9 +2,9 @@ import torch
from torchaudio_unittest.common_utils import PytorchTestCase from torchaudio_unittest.common_utils import PytorchTestCase
from .tacotron2_loss_impl import ( from .tacotron2_loss_impl import (
Tacotron2LossGradcheckTests,
Tacotron2LossShapeTests, Tacotron2LossShapeTests,
Tacotron2LossTorchscriptTests, Tacotron2LossTorchscriptTests,
Tacotron2LossGradcheckTests,
) )
......
import torch import torch
from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda
from .tacotron2_loss_impl import ( from .tacotron2_loss_impl import (
Tacotron2LossGradcheckTests,
Tacotron2LossShapeTests, Tacotron2LossShapeTests,
Tacotron2LossTorchscriptTests, Tacotron2LossTorchscriptTests,
Tacotron2LossGradcheckTests,
) )
......
import torch import torch
from pipeline_tacotron2.loss import Tacotron2Loss from pipeline_tacotron2.loss import Tacotron2Loss
from torch.autograd import gradcheck, gradgradcheck from torch.autograd import gradcheck, gradgradcheck
from torchaudio_unittest.common_utils import ( from torchaudio_unittest.common_utils import TestBaseMixin, torch_script
TestBaseMixin,
torch_script,
)
class Tacotron2LossInputMixin(TestBaseMixin): class Tacotron2LossInputMixin(TestBaseMixin):
......
from parameterized import parameterized from parameterized import parameterized
from torchaudio._internal.module_utils import is_module_available from torchaudio._internal.module_utils import is_module_available
from torchaudio_unittest.common_utils import TorchaudioTestCase, skipIfNoModule from torchaudio_unittest.common_utils import skipIfNoModule, TorchaudioTestCase
if is_module_available("unidecode") and is_module_available("inflect"): if is_module_available("unidecode") and is_module_available("inflect"):
from pipeline_tacotron2.text.numbers import ( from pipeline_tacotron2.text.numbers import (
_remove_commas,
_expand_pounds,
_expand_dollars,
_expand_decimal_point, _expand_decimal_point,
_expand_ordinal, _expand_dollars,
_expand_number, _expand_number,
_expand_ordinal,
_expand_pounds,
_remove_commas,
) )
from pipeline_tacotron2.text.text_preprocessing import text_to_sequence from pipeline_tacotron2.text.text_preprocessing import text_to_sequence
......
...@@ -7,10 +7,10 @@ from parameterized import parameterized ...@@ -7,10 +7,10 @@ from parameterized import parameterized
from torch import Tensor from torch import Tensor
from torch.autograd import gradcheck, gradgradcheck from torch.autograd import gradcheck, gradgradcheck
from torchaudio_unittest.common_utils import ( from torchaudio_unittest.common_utils import (
TestBaseMixin,
get_whitenoise,
get_spectrogram, get_spectrogram,
get_whitenoise,
rnnt_utils, rnnt_utils,
TestBaseMixin,
) )
......
...@@ -3,7 +3,11 @@ import unittest ...@@ -3,7 +3,11 @@ import unittest
import torch import torch
import torchaudio.functional as F import torchaudio.functional as F
from parameterized import parameterized from parameterized import parameterized
from torchaudio_unittest.common_utils import PytorchTestCase, TorchaudioTestCase, skipIfNoSox from torchaudio_unittest.common_utils import (
PytorchTestCase,
skipIfNoSox,
TorchaudioTestCase,
)
from .functional_impl import Functional, FunctionalCPUOnly from .functional_impl import Functional, FunctionalCPUOnly
......
...@@ -9,12 +9,12 @@ import torchaudio.functional as F ...@@ -9,12 +9,12 @@ import torchaudio.functional as F
from parameterized import parameterized from parameterized import parameterized
from scipy import signal from scipy import signal
from torchaudio_unittest.common_utils import ( from torchaudio_unittest.common_utils import (
TestBaseMixin, beamform_utils,
get_sinusoid, get_sinusoid,
nested_params,
get_whitenoise, get_whitenoise,
nested_params,
rnnt_utils, rnnt_utils,
beamform_utils, TestBaseMixin,
) )
......
...@@ -9,10 +9,7 @@ from torchaudio_unittest.common_utils import ( ...@@ -9,10 +9,7 @@ from torchaudio_unittest.common_utils import (
TempDirMixin, TempDirMixin,
TestBaseMixin, TestBaseMixin,
) )
from torchaudio_unittest.common_utils.kaldi_utils import ( from torchaudio_unittest.common_utils.kaldi_utils import convert_args, run_kaldi
convert_args,
run_kaldi,
)
class Kaldi(TempDirMixin, TestBaseMixin): class Kaldi(TempDirMixin, TestBaseMixin):
......
...@@ -14,10 +14,10 @@ if LIBROSA_AVAILABLE: ...@@ -14,10 +14,10 @@ if LIBROSA_AVAILABLE:
from torchaudio_unittest.common_utils import ( from torchaudio_unittest.common_utils import (
TestBaseMixin,
nested_params,
get_whitenoise,
get_spectrogram, get_spectrogram,
get_whitenoise,
nested_params,
TestBaseMixin,
) )
......
import torch import torch
import torchaudio.functional as F import torchaudio.functional as F
from torchaudio_unittest.common_utils import ( from torchaudio_unittest.common_utils import (
skipIfNoSox,
skipIfNoExec,
TempDirMixin,
TorchaudioTestCase,
get_asset_path, get_asset_path,
sox_utils, get_whitenoise,
load_wav, load_wav,
save_wav, save_wav,
get_whitenoise, skipIfNoExec,
skipIfNoSox,
sox_utils,
TempDirMixin,
TorchaudioTestCase,
) )
......
import torch import torch
from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda
from .torchscript_consistency_impl import Functional, FunctionalFloat32Only from .torchscript_consistency_impl import Functional, FunctionalFloat32Only
......
...@@ -6,9 +6,9 @@ import torchaudio.functional as F ...@@ -6,9 +6,9 @@ import torchaudio.functional as F
from parameterized import parameterized from parameterized import parameterized
from torchaudio_unittest import common_utils from torchaudio_unittest import common_utils
from torchaudio_unittest.common_utils import ( from torchaudio_unittest.common_utils import (
skipIfRocm,
TempDirMixin, TempDirMixin,
TestBaseMixin, TestBaseMixin,
skipIfRocm,
torch_script, torch_script,
) )
......
import torch import torch
from parameterized import parameterized from parameterized import parameterized
from torchaudio_unittest.common_utils import ( from torchaudio_unittest.common_utils import (
TorchaudioTestCase,
TempDirMixin,
get_asset_path, get_asset_path,
get_image,
get_wav_data, get_wav_data,
save_wav,
skipIfNoFFmpeg,
nested_params,
is_ffmpeg_available, is_ffmpeg_available,
get_image, nested_params,
save_image, save_image,
save_wav,
skipIfNoFFmpeg,
TempDirMixin,
TorchaudioTestCase,
) )
if is_ffmpeg_available(): if is_ffmpeg_available():
from torchaudio.io import ( from torchaudio.io import (
StreamReader, StreamReader,
StreamReaderSourceAudioStream,
StreamReaderSourceStream, StreamReaderSourceStream,
StreamReaderSourceVideoStream, StreamReaderSourceVideoStream,
StreamReaderSourceAudioStream,
) )
......
import torch import torch
from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda
from torchaudio_unittest.models.conformer.conformer_test_impl import ConformerTestImpl from torchaudio_unittest.models.conformer.conformer_test_impl import ConformerTestImpl
......
import torch import torch
from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda
from torchaudio_unittest.models.emformer.emformer_test_impl import EmformerTestImpl from torchaudio_unittest.models.emformer.emformer_test_impl import EmformerTestImpl
......
import torch import torch
from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda
from torchaudio_unittest.models.rnnt.rnnt_test_impl import RNNTTestImpl from torchaudio_unittest.models.rnnt.rnnt_test_impl import RNNTTestImpl
......
import torch import torch
from torchaudio_unittest.common_utils import PytorchTestCase from torchaudio_unittest.common_utils import PytorchTestCase
from torchaudio_unittest.models.rnnt_decoder.rnnt_decoder_test_impl import RNNTBeamSearchTestImpl from torchaudio_unittest.models.rnnt_decoder.rnnt_decoder_test_impl import (
RNNTBeamSearchTestImpl,
)
class RNNTBeamSearchFloat32CPUTest(RNNTBeamSearchTestImpl, PytorchTestCase): class RNNTBeamSearchFloat32CPUTest(RNNTBeamSearchTestImpl, PytorchTestCase):
......
import torch import torch
from torchaudio_unittest.common_utils import skipIfNoCuda, PytorchTestCase from torchaudio_unittest.common_utils import PytorchTestCase, skipIfNoCuda
from torchaudio_unittest.models.rnnt_decoder.rnnt_decoder_test_impl import RNNTBeamSearchTestImpl from torchaudio_unittest.models.rnnt_decoder.rnnt_decoder_test_impl import (
RNNTBeamSearchTestImpl,
)
@skipIfNoCuda @skipIfNoCuda
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment