Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
c80d9a71
Unverified
Commit
c80d9a71
authored
May 06, 2020
by
moto
Committed by
GitHub
May 06, 2020
Browse files
Fix docstring of masking behavior (#612)
parent
867d669b
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
7 additions
and
8 deletions
+7
-8
torchaudio/functional.py
torchaudio/functional.py
+0
-1
torchaudio/transforms.py
torchaudio/transforms.py
+7
-7
No files found.
torchaudio/functional.py
View file @
c80d9a71
...
...
@@ -1442,7 +1442,6 @@ def mask_along_axis_iid(
r
"""
Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where
``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``.
All examples will have the same mask interval.
Args:
specgrams (Tensor): Real spectrograms (batch, channel, freq, time)
...
...
torchaudio/transforms.py
View file @
c80d9a71
...
...
@@ -779,6 +779,7 @@ class _AxisMasking(torch.nn.Module):
mask_param (int): Maximum possible length of the mask.
axis (int): What dimension the mask is applied on.
iid_masks (bool): Applies iid masks to each of the examples in the batch dimension.
This option is applicable only when the input tensor is 4D.
"""
__constants__
=
[
'mask_param'
,
'axis'
,
'iid_masks'
]
...
...
@@ -798,7 +799,6 @@ class _AxisMasking(torch.nn.Module):
Returns:
Tensor: Masked spectrogram of dimensions (..., freq, time).
"""
# if iid_masks flag marked and specgram has a batch dimension
if
self
.
iid_masks
and
specgram
.
dim
()
==
4
:
return
F
.
mask_along_axis_iid
(
specgram
,
self
.
mask_param
,
mask_value
,
self
.
axis
+
1
)
...
...
@@ -812,10 +812,10 @@ class FrequencyMasking(_AxisMasking):
Args:
freq_mask_param (int): maximum possible length of the mask.
Indices uniformly sampled from [0, freq_mask_param).
iid_masks (bool, optional): whether to apply the same mask to all
the examples/channels in the batch. (Default: ``False``)
iid_masks (bool, optional): whether to apply different masks to each
example/channel in the batch. (Default: ``False``)
This option is applicable only when the input tensor is 4D.
"""
def
__init__
(
self
,
freq_mask_param
:
int
,
iid_masks
:
bool
=
False
)
->
None
:
super
(
FrequencyMasking
,
self
).
__init__
(
freq_mask_param
,
1
,
iid_masks
)
...
...
@@ -826,10 +826,10 @@ class TimeMasking(_AxisMasking):
Args:
time_mask_param (int): maximum possible length of the mask.
Indices uniformly sampled from [0, time_mask_param).
iid_masks (bool, optional): whether to apply the same mask to all
the examples/channels in the batch. (Default: ``False``)
iid_masks (bool, optional): whether to apply different masks to each
example/channel in the batch. (Default: ``False``)
This option is applicable only when the input tensor is 4D.
"""
def
__init__
(
self
,
time_mask_param
:
int
,
iid_masks
:
bool
=
False
)
->
None
:
super
(
TimeMasking
,
self
).
__init__
(
time_mask_param
,
2
,
iid_masks
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment