Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
bec90472
Unverified
Commit
bec90472
authored
Feb 21, 2021
by
Aziz
Committed by
GitHub
Feb 21, 2021
Browse files
Redactor librosa compatibility test (#1259)
parent
f2b183ee
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
153 additions
and
139 deletions
+153
-139
test/torchaudio_unittest/functional/librosa_compatibility_test.py
...chaudio_unittest/functional/librosa_compatibility_test.py
+153
-0
test/torchaudio_unittest/librosa_compatibility_test.py
test/torchaudio_unittest/librosa_compatibility_test.py
+0
-139
No files found.
test/torchaudio_unittest/functional/librosa_compatibility_test.py
0 → 100644
View file @
bec90472
import
itertools
import
unittest
from
distutils.version
import
StrictVersion
import
torch
from
parameterized
import
parameterized
import
torchaudio.functional
as
F
from
torchaudio._internal.module_utils
import
is_module_available
LIBROSA_AVAILABLE
=
is_module_available
(
'librosa'
)
if
LIBROSA_AVAILABLE
:
import
numpy
as
np
import
librosa
from
torchaudio_unittest
import
common_utils
@
unittest
.
skipIf
(
not
LIBROSA_AVAILABLE
,
"Librosa not available"
)
class
TestFunctional
(
common_utils
.
TorchaudioTestCase
):
"""Test suite for functions in `functional` module."""
def
test_griffinlim
(
self
):
# NOTE: This test is flaky without a fixed random seed
# See https://github.com/pytorch/audio/issues/382
torch
.
random
.
manual_seed
(
42
)
tensor
=
torch
.
rand
((
1
,
1000
))
n_fft
=
400
ws
=
400
hop
=
100
window
=
torch
.
hann_window
(
ws
)
normalize
=
False
momentum
=
0.99
n_iter
=
8
length
=
1000
rand_init
=
False
init
=
'random'
if
rand_init
else
None
specgram
=
F
.
spectrogram
(
tensor
,
0
,
window
,
n_fft
,
hop
,
ws
,
2
,
normalize
).
sqrt
()
ta_out
=
F
.
griffinlim
(
specgram
,
window
,
n_fft
,
hop
,
ws
,
1
,
normalize
,
n_iter
,
momentum
,
length
,
rand_init
)
lr_out
=
librosa
.
griffinlim
(
specgram
.
squeeze
(
0
).
numpy
(),
n_iter
=
n_iter
,
hop_length
=
hop
,
momentum
=
momentum
,
init
=
init
,
length
=
length
)
lr_out
=
torch
.
from_numpy
(
lr_out
).
unsqueeze
(
0
)
self
.
assertEqual
(
ta_out
,
lr_out
,
atol
=
5e-5
,
rtol
=
1e-5
)
def
_test_create_fb
(
self
,
n_mels
=
40
,
sample_rate
=
22050
,
n_fft
=
2048
,
fmin
=
0.0
,
fmax
=
8000.0
,
norm
=
None
):
librosa_fb
=
librosa
.
filters
.
mel
(
sr
=
sample_rate
,
n_fft
=
n_fft
,
n_mels
=
n_mels
,
fmax
=
fmax
,
fmin
=
fmin
,
htk
=
True
,
norm
=
norm
)
fb
=
F
.
create_fb_matrix
(
sample_rate
=
sample_rate
,
n_mels
=
n_mels
,
f_max
=
fmax
,
f_min
=
fmin
,
n_freqs
=
(
n_fft
//
2
+
1
),
norm
=
norm
)
for
i_mel_bank
in
range
(
n_mels
):
self
.
assertEqual
(
fb
[:,
i_mel_bank
],
torch
.
tensor
(
librosa_fb
[
i_mel_bank
]),
atol
=
1e-4
,
rtol
=
1e-5
)
def
test_create_fb
(
self
):
self
.
_test_create_fb
()
self
.
_test_create_fb
(
n_mels
=
128
,
sample_rate
=
44100
)
self
.
_test_create_fb
(
n_mels
=
128
,
fmin
=
2000.0
,
fmax
=
5000.0
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
100.0
,
fmax
=
9000.0
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
800.0
,
fmax
=
900.0
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
1900.0
,
fmax
=
900.0
)
self
.
_test_create_fb
(
n_mels
=
10
,
fmin
=
1900.0
,
fmax
=
900.0
)
if
StrictVersion
(
librosa
.
__version__
)
<
StrictVersion
(
"0.7.2"
):
return
self
.
_test_create_fb
(
n_mels
=
128
,
sample_rate
=
44100
,
norm
=
"slaney"
)
self
.
_test_create_fb
(
n_mels
=
128
,
fmin
=
2000.0
,
fmax
=
5000.0
,
norm
=
"slaney"
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
100.0
,
fmax
=
9000.0
,
norm
=
"slaney"
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
800.0
,
fmax
=
900.0
,
norm
=
"slaney"
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
1900.0
,
fmax
=
900.0
,
norm
=
"slaney"
)
self
.
_test_create_fb
(
n_mels
=
10
,
fmin
=
1900.0
,
fmax
=
900.0
,
norm
=
"slaney"
)
def
test_amplitude_to_DB
(
self
):
spec
=
torch
.
rand
((
6
,
201
))
amin
=
1e-10
db_multiplier
=
0.0
top_db
=
80.0
# Power to DB
multiplier
=
10.0
ta_out
=
F
.
amplitude_to_DB
(
spec
,
multiplier
,
amin
,
db_multiplier
,
top_db
)
lr_out
=
librosa
.
core
.
power_to_db
(
spec
.
numpy
())
lr_out
=
torch
.
from_numpy
(
lr_out
)
self
.
assertEqual
(
ta_out
,
lr_out
,
atol
=
5e-5
,
rtol
=
1e-5
)
# Amplitude to DB
multiplier
=
20.0
ta_out
=
F
.
amplitude_to_DB
(
spec
,
multiplier
,
amin
,
db_multiplier
,
top_db
)
lr_out
=
librosa
.
core
.
amplitude_to_db
(
spec
.
numpy
())
lr_out
=
torch
.
from_numpy
(
lr_out
)
self
.
assertEqual
(
ta_out
,
lr_out
,
atol
=
5e-5
,
rtol
=
1e-5
)
@
unittest
.
skipIf
(
not
LIBROSA_AVAILABLE
,
"Librosa not available"
)
class
TestPhaseVocoder
(
common_utils
.
TorchaudioTestCase
):
@
parameterized
.
expand
(
list
(
itertools
.
product
(
[(
2
,
1025
,
400
,
2
)],
[
0.5
,
1.01
,
1.3
],
[
256
]
)))
def
test_phase_vocoder
(
self
,
shape
,
rate
,
hop_length
):
# Due to cummulative sum, numerical error in using torch.float32 will
# result in bottom right values of the stretched sectrogram to not
# match with librosa.
torch
.
random
.
manual_seed
(
42
)
complex_specgrams
=
torch
.
randn
(
*
shape
)
complex_specgrams
=
complex_specgrams
.
type
(
torch
.
float64
)
phase_advance
=
torch
.
linspace
(
0
,
np
.
pi
*
hop_length
,
complex_specgrams
.
shape
[
-
3
],
dtype
=
torch
.
float64
)[...,
None
]
complex_specgrams_stretch
=
F
.
phase_vocoder
(
complex_specgrams
,
rate
=
rate
,
phase_advance
=
phase_advance
)
# == Test shape
expected_size
=
list
(
complex_specgrams
.
size
())
expected_size
[
-
2
]
=
int
(
np
.
ceil
(
expected_size
[
-
2
]
/
rate
))
assert
complex_specgrams
.
dim
()
==
complex_specgrams_stretch
.
dim
()
assert
complex_specgrams_stretch
.
size
()
==
torch
.
Size
(
expected_size
)
# == Test values
index
=
[
0
]
*
(
complex_specgrams
.
dim
()
-
3
)
+
[
slice
(
None
)]
*
3
mono_complex_specgram
=
complex_specgrams
[
index
].
numpy
()
mono_complex_specgram
=
mono_complex_specgram
[...,
0
]
+
\
mono_complex_specgram
[...,
1
]
*
1j
expected_complex_stretch
=
librosa
.
phase_vocoder
(
mono_complex_specgram
,
rate
=
rate
,
hop_length
=
hop_length
)
complex_stretch
=
complex_specgrams_stretch
[
index
].
numpy
()
complex_stretch
=
complex_stretch
[...,
0
]
+
1j
*
complex_stretch
[...,
1
]
self
.
assertEqual
(
complex_stretch
,
torch
.
from_numpy
(
expected_complex_stretch
),
atol
=
1e-5
,
rtol
=
1e-5
)
test/torchaudio_unittest/librosa_compatibility_test.py
View file @
bec90472
"""Test suites for numerical compatibility with librosa"""
import
os
import
unittest
from
distutils.version
import
StrictVersion
import
torch
import
torchaudio
import
torchaudio.functional
as
F
from
torchaudio._internal.module_utils
import
is_module_available
from
parameterized
import
parameterized
,
param
import
itertools
LIBROSA_AVAILABLE
=
is_module_available
(
'librosa'
)
if
LIBROSA_AVAILABLE
:
import
numpy
as
np
import
librosa
import
scipy
from
torchaudio_unittest
import
common_utils
@
unittest
.
skipIf
(
not
LIBROSA_AVAILABLE
,
"Librosa not available"
)
class
TestFunctional
(
common_utils
.
TorchaudioTestCase
):
"""Test suite for functions in `functional` module."""
def
test_griffinlim
(
self
):
# NOTE: This test is flaky without a fixed random seed
# See https://github.com/pytorch/audio/issues/382
torch
.
random
.
manual_seed
(
42
)
tensor
=
torch
.
rand
((
1
,
1000
))
n_fft
=
400
ws
=
400
hop
=
100
window
=
torch
.
hann_window
(
ws
)
normalize
=
False
momentum
=
0.99
n_iter
=
8
length
=
1000
rand_init
=
False
init
=
'random'
if
rand_init
else
None
specgram
=
F
.
spectrogram
(
tensor
,
0
,
window
,
n_fft
,
hop
,
ws
,
2
,
normalize
).
sqrt
()
ta_out
=
F
.
griffinlim
(
specgram
,
window
,
n_fft
,
hop
,
ws
,
1
,
normalize
,
n_iter
,
momentum
,
length
,
rand_init
)
lr_out
=
librosa
.
griffinlim
(
specgram
.
squeeze
(
0
).
numpy
(),
n_iter
=
n_iter
,
hop_length
=
hop
,
momentum
=
momentum
,
init
=
init
,
length
=
length
)
lr_out
=
torch
.
from_numpy
(
lr_out
).
unsqueeze
(
0
)
self
.
assertEqual
(
ta_out
,
lr_out
,
atol
=
5e-5
,
rtol
=
1e-5
)
def
_test_create_fb
(
self
,
n_mels
=
40
,
sample_rate
=
22050
,
n_fft
=
2048
,
fmin
=
0.0
,
fmax
=
8000.0
,
norm
=
None
):
librosa_fb
=
librosa
.
filters
.
mel
(
sr
=
sample_rate
,
n_fft
=
n_fft
,
n_mels
=
n_mels
,
fmax
=
fmax
,
fmin
=
fmin
,
htk
=
True
,
norm
=
norm
)
fb
=
F
.
create_fb_matrix
(
sample_rate
=
sample_rate
,
n_mels
=
n_mels
,
f_max
=
fmax
,
f_min
=
fmin
,
n_freqs
=
(
n_fft
//
2
+
1
),
norm
=
norm
)
for
i_mel_bank
in
range
(
n_mels
):
self
.
assertEqual
(
fb
[:,
i_mel_bank
],
torch
.
tensor
(
librosa_fb
[
i_mel_bank
]),
atol
=
1e-4
,
rtol
=
1e-5
)
def
test_create_fb
(
self
):
self
.
_test_create_fb
()
self
.
_test_create_fb
(
n_mels
=
128
,
sample_rate
=
44100
)
self
.
_test_create_fb
(
n_mels
=
128
,
fmin
=
2000.0
,
fmax
=
5000.0
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
100.0
,
fmax
=
9000.0
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
800.0
,
fmax
=
900.0
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
1900.0
,
fmax
=
900.0
)
self
.
_test_create_fb
(
n_mels
=
10
,
fmin
=
1900.0
,
fmax
=
900.0
)
if
StrictVersion
(
librosa
.
__version__
)
<
StrictVersion
(
"0.7.2"
):
return
self
.
_test_create_fb
(
n_mels
=
128
,
sample_rate
=
44100
,
norm
=
"slaney"
)
self
.
_test_create_fb
(
n_mels
=
128
,
fmin
=
2000.0
,
fmax
=
5000.0
,
norm
=
"slaney"
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
100.0
,
fmax
=
9000.0
,
norm
=
"slaney"
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
800.0
,
fmax
=
900.0
,
norm
=
"slaney"
)
self
.
_test_create_fb
(
n_mels
=
56
,
fmin
=
1900.0
,
fmax
=
900.0
,
norm
=
"slaney"
)
self
.
_test_create_fb
(
n_mels
=
10
,
fmin
=
1900.0
,
fmax
=
900.0
,
norm
=
"slaney"
)
def
test_amplitude_to_DB
(
self
):
spec
=
torch
.
rand
((
6
,
201
))
amin
=
1e-10
db_multiplier
=
0.0
top_db
=
80.0
# Power to DB
multiplier
=
10.0
ta_out
=
F
.
amplitude_to_DB
(
spec
,
multiplier
,
amin
,
db_multiplier
,
top_db
)
lr_out
=
librosa
.
core
.
power_to_db
(
spec
.
numpy
())
lr_out
=
torch
.
from_numpy
(
lr_out
)
self
.
assertEqual
(
ta_out
,
lr_out
,
atol
=
5e-5
,
rtol
=
1e-5
)
# Amplitude to DB
multiplier
=
20.0
ta_out
=
F
.
amplitude_to_DB
(
spec
,
multiplier
,
amin
,
db_multiplier
,
top_db
)
lr_out
=
librosa
.
core
.
amplitude_to_db
(
spec
.
numpy
())
lr_out
=
torch
.
from_numpy
(
lr_out
)
self
.
assertEqual
(
ta_out
,
lr_out
,
atol
=
5e-5
,
rtol
=
1e-5
)
@
unittest
.
skipIf
(
not
LIBROSA_AVAILABLE
,
"Librosa not available"
)
class
TestPhaseVocoder
(
common_utils
.
TorchaudioTestCase
):
@
parameterized
.
expand
(
list
(
itertools
.
product
(
[(
2
,
1025
,
400
,
2
)],
[
0.5
,
1.01
,
1.3
],
[
256
]
)))
def
test_phase_vocoder
(
self
,
shape
,
rate
,
hop_length
):
# Due to cummulative sum, numerical error in using torch.float32 will
# result in bottom right values of the stretched sectrogram to not
# match with librosa.
torch
.
random
.
manual_seed
(
42
)
complex_specgrams
=
torch
.
randn
(
*
shape
)
complex_specgrams
=
complex_specgrams
.
type
(
torch
.
float64
)
phase_advance
=
torch
.
linspace
(
0
,
np
.
pi
*
hop_length
,
complex_specgrams
.
shape
[
-
3
],
dtype
=
torch
.
float64
)[...,
None
]
complex_specgrams_stretch
=
F
.
phase_vocoder
(
complex_specgrams
,
rate
=
rate
,
phase_advance
=
phase_advance
)
# == Test shape
expected_size
=
list
(
complex_specgrams
.
size
())
expected_size
[
-
2
]
=
int
(
np
.
ceil
(
expected_size
[
-
2
]
/
rate
))
assert
complex_specgrams
.
dim
()
==
complex_specgrams_stretch
.
dim
()
assert
complex_specgrams_stretch
.
size
()
==
torch
.
Size
(
expected_size
)
# == Test values
index
=
[
0
]
*
(
complex_specgrams
.
dim
()
-
3
)
+
[
slice
(
None
)]
*
3
mono_complex_specgram
=
complex_specgrams
[
index
].
numpy
()
mono_complex_specgram
=
mono_complex_specgram
[...,
0
]
+
\
mono_complex_specgram
[...,
1
]
*
1j
expected_complex_stretch
=
librosa
.
phase_vocoder
(
mono_complex_specgram
,
rate
=
rate
,
hop_length
=
hop_length
)
complex_stretch
=
complex_specgrams_stretch
[
index
].
numpy
()
complex_stretch
=
complex_stretch
[...,
0
]
+
1j
*
complex_stretch
[...,
1
]
self
.
assertEqual
(
complex_stretch
,
torch
.
from_numpy
(
expected_complex_stretch
),
atol
=
1e-5
,
rtol
=
1e-5
)
def
_load_audio_asset
(
*
asset_paths
,
**
kwargs
):
file_path
=
common_utils
.
get_asset_path
(
*
asset_paths
)
sound
,
sample_rate
=
torchaudio
.
load
(
file_path
,
**
kwargs
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment