Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
5e54c770
Unverified
Commit
5e54c770
authored
Nov 06, 2020
by
moto
Committed by
GitHub
Nov 06, 2020
Browse files
Extract filtering functions from functional.py (#1004)
parent
4b4b8bf6
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
1490 additions
and
1442 deletions
+1490
-1442
torchaudio/functional/__init__.py
torchaudio/functional/__init__.py
+18
-16
torchaudio/functional/filtering.py
torchaudio/functional/filtering.py
+1469
-0
torchaudio/functional/functional.py
torchaudio/functional/functional.py
+3
-1426
No files found.
torchaudio/functional/__init__.py
View file @
5e54c770
from
.functional
import
(
allpass_biquad
,
amplitude_to_DB
,
angle
,
complex_norm
,
compute_deltas
,
create_dct
,
create_fb_matrix
,
DB_to_amplitude
,
detect_pitch_frequency
,
griffinlim
,
magphase
,
mask_along_axis
,
mask_along_axis_iid
,
mu_law_encoding
,
mu_law_decoding
,
phase_vocoder
,
sliding_window_cmn
,
spectrogram
,
)
from
.filtering
import
(
allpass_biquad
,
band_biquad
,
bandpass_biquad
,
bandreject_biquad
,
bass_biquad
,
biquad
,
DB_to_amplitude
,
complex_norm
,
compute_deltas
,
contrast
,
create_dct
,
create_fb_matrix
,
dither
,
dcshift
,
deemph_biquad
,
detect_pitch_frequency
,
equalizer_biquad
,
flanger
,
gain
,
griffinlim
,
highpass_biquad
,
lfilter
,
lowpass_biquad
,
magphase
,
mask_along_axis
,
mask_along_axis_iid
,
mu_law_encoding
,
mu_law_decoding
,
overdrive
,
phase_vocoder
,
phaser
,
riaa_biquad
,
sliding_window_cmn
,
spectrogram
,
treble_biquad
,
vad
,
)
torchaudio/functional/filtering.py
0 → 100644
View file @
5e54c770
import
math
from
typing
import
Optional
import
torch
from
torch
import
Tensor
import
torchaudio._internal.fft
def
_dB2Linear
(
x
:
float
)
->
float
:
return
math
.
exp
(
x
*
math
.
log
(
10
)
/
20.0
)
def
_generate_wave_table
(
wave_type
:
str
,
data_type
:
str
,
table_size
:
int
,
min
:
float
,
max
:
float
,
phase
:
float
,
device
:
torch
.
device
,
)
->
Tensor
:
r
"""A helper fucntion for phaser. Generates a table with given parameters
Args:
wave_type (str): SINE or TRIANGULAR
data_type (str): desired data_type ( `INT` or `FLOAT` )
table_size (int): desired table size
min (float): desired min value
max (float): desired max value
phase (float): desired phase
device (torch.device): Torch device on which table must be generated
Returns:
Tensor: A 1D tensor with wave table values
"""
phase_offset
=
int
(
phase
/
math
.
pi
/
2
*
table_size
+
0.5
)
t
=
torch
.
arange
(
table_size
,
device
=
device
,
dtype
=
torch
.
int32
)
point
=
(
t
+
phase_offset
)
%
table_size
d
=
torch
.
zeros_like
(
point
,
device
=
device
,
dtype
=
torch
.
float64
)
if
wave_type
==
"SINE"
:
d
=
(
torch
.
sin
(
point
.
to
(
torch
.
float64
)
/
table_size
*
2
*
math
.
pi
)
+
1
)
/
2
elif
wave_type
==
"TRIANGLE"
:
d
=
point
.
to
(
torch
.
float64
)
*
2
/
table_size
value
=
4
*
point
//
table_size
d
[
value
==
0
]
=
d
[
value
==
0
]
+
0.5
d
[
value
==
1
]
=
1.5
-
d
[
value
==
1
]
d
[
value
==
2
]
=
1.5
-
d
[
value
==
2
]
d
[
value
==
3
]
=
d
[
value
==
3
]
-
1.5
d
=
d
*
(
max
-
min
)
+
min
if
data_type
==
"INT"
:
mask
=
d
<
0
d
[
mask
]
=
d
[
mask
]
-
0.5
d
[
~
mask
]
=
d
[
~
mask
]
+
0.5
d
=
d
.
to
(
torch
.
int32
)
elif
data_type
==
"FLOAT"
:
d
=
d
.
to
(
torch
.
float32
)
return
d
def
allpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design two-pole all-pass filter. Similar to SoX implementation.
Args:
waveform(torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
b0
=
1
-
alpha
b1
=
-
2
*
math
.
cos
(
w0
)
b2
=
1
+
alpha
a0
=
1
+
alpha
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
band_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
,
noise
:
bool
=
False
,
)
->
Tensor
:
r
"""Design two-pole band filter. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``).
noise (bool, optional) : If ``True``, uses the alternate mode for un-pitched audio (e.g. percussion).
If ``False``, uses mode oriented to pitched audio, i.e. voice, singing,
or instrumental music (Default: ``False``).
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
bw_Hz
=
central_freq
/
Q
a0
=
1.0
a2
=
math
.
exp
(
-
2
*
math
.
pi
*
bw_Hz
/
sample_rate
)
a1
=
-
4
*
a2
/
(
1
+
a2
)
*
math
.
cos
(
w0
)
b0
=
math
.
sqrt
(
1
-
a1
*
a1
/
(
4
*
a2
))
*
(
1
-
a2
)
if
noise
:
mult
=
math
.
sqrt
(((
1
+
a2
)
*
(
1
+
a2
)
-
a1
*
a1
)
*
(
1
-
a2
)
/
(
1
+
a2
))
/
b0
b0
*=
mult
b1
=
0.0
b2
=
0.0
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
bandpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
,
const_skirt_gain
:
bool
=
False
,
)
->
Tensor
:
r
"""Design two-pole band-pass filter. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
const_skirt_gain (bool, optional) : If ``True``, uses a constant skirt gain (peak gain = Q).
If ``False``, uses a constant 0dB peak gain. (Default: ``False``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
temp
=
math
.
sin
(
w0
)
/
2
if
const_skirt_gain
else
alpha
b0
=
temp
b1
=
0.0
b2
=
-
temp
a0
=
1
+
alpha
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
bandreject_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design two-pole band-reject filter. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
b0
=
1.0
b1
=
-
2
*
math
.
cos
(
w0
)
b2
=
1.0
a0
=
1
+
alpha
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
bass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
gain
:
float
,
central_freq
:
float
=
100
,
Q
:
float
=
0.707
,
)
->
Tensor
:
r
"""Design a bass tone-control effect. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
gain (float): desired gain at the boost (or attenuation) in dB.
central_freq (float, optional): central frequency (in Hz). (Default: ``100``)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``).
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
A
=
math
.
exp
(
gain
/
40
*
math
.
log
(
10
))
temp1
=
2
*
math
.
sqrt
(
A
)
*
alpha
temp2
=
(
A
-
1
)
*
math
.
cos
(
w0
)
temp3
=
(
A
+
1
)
*
math
.
cos
(
w0
)
b0
=
A
*
((
A
+
1
)
-
temp2
+
temp1
)
b1
=
2
*
A
*
((
A
-
1
)
-
temp3
)
b2
=
A
*
((
A
+
1
)
-
temp2
-
temp1
)
a0
=
(
A
+
1
)
+
temp2
+
temp1
a1
=
-
2
*
((
A
-
1
)
+
temp3
)
a2
=
(
A
+
1
)
+
temp2
-
temp1
return
biquad
(
waveform
,
b0
/
a0
,
b1
/
a0
,
b2
/
a0
,
a0
/
a0
,
a1
/
a0
,
a2
/
a0
)
def
biquad
(
waveform
:
Tensor
,
b0
:
float
,
b1
:
float
,
b2
:
float
,
a0
:
float
,
a1
:
float
,
a2
:
float
)
->
Tensor
:
r
"""Perform a biquad filter of input tensor. Initial conditions set to 0.
https://en.wikipedia.org/wiki/Digital_biquad_filter
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
b0 (float): numerator coefficient of current input, x[n]
b1 (float): numerator coefficient of input one time step ago x[n-1]
b2 (float): numerator coefficient of input two time steps ago x[n-2]
a0 (float): denominator coefficient of current output y[n], typically 1
a1 (float): denominator coefficient of current output y[n-1]
a2 (float): denominator coefficient of current output y[n-2]
Returns:
Tensor: Waveform with dimension of `(..., time)`
"""
device
=
waveform
.
device
dtype
=
waveform
.
dtype
output_waveform
=
lfilter
(
waveform
,
torch
.
tensor
([
a0
,
a1
,
a2
],
dtype
=
dtype
,
device
=
device
),
torch
.
tensor
([
b0
,
b1
,
b2
],
dtype
=
dtype
,
device
=
device
),
)
return
output_waveform
def
contrast
(
waveform
:
Tensor
,
enhancement_amount
:
float
=
75.0
)
->
Tensor
:
r
"""Apply contrast effect. Similar to SoX implementation.
Comparable with compression, this effect modifies an audio signal to make it sound louder
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
enhancement_amount (float): controls the amount of the enhancement
Allowed range of values for enhancement_amount : 0-100
Note that enhancement_amount = 0 still gives a significant contrast enhancement
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
"""
if
not
0
<=
enhancement_amount
<=
100
:
raise
ValueError
(
"Allowed range of values for enhancement_amount : 0-100"
)
contrast
=
enhancement_amount
/
750.0
temp1
=
waveform
*
(
math
.
pi
/
2
)
temp2
=
contrast
*
torch
.
sin
(
temp1
*
4
)
output_waveform
=
torch
.
sin
(
temp1
+
temp2
)
return
output_waveform
def
dcshift
(
waveform
:
Tensor
,
shift
:
float
,
limiter_gain
:
Optional
[
float
]
=
None
)
->
Tensor
:
r
"""Apply a DC shift to the audio. Similar to SoX implementation.
This can be useful to remove a DC offset
(caused perhaps by a hardware problem in the recording chain) from the audio
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
shift (float): indicates the amount to shift the audio
Allowed range of values for shift : -2.0 to +2.0
limiter_gain (float): It is used only on peaks to prevent clipping
It should have a value much less than 1 (e.g. 0.05 or 0.02)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
"""
output_waveform
=
waveform
limiter_threshold
=
0.0
if
limiter_gain
is
not
None
:
limiter_threshold
=
1.0
-
(
abs
(
shift
)
-
limiter_gain
)
if
limiter_gain
is
not
None
and
shift
>
0
:
mask
=
waveform
>
limiter_threshold
temp
=
(
(
waveform
[
mask
]
-
limiter_threshold
)
*
limiter_gain
/
(
1
-
limiter_threshold
)
)
output_waveform
[
mask
]
=
(
temp
+
limiter_threshold
+
shift
).
clamp
(
max
=
limiter_threshold
)
output_waveform
[
~
mask
]
=
(
waveform
[
~
mask
]
+
shift
).
clamp
(
min
=-
1
,
max
=
1
)
elif
limiter_gain
is
not
None
and
shift
<
0
:
mask
=
waveform
<
-
limiter_threshold
temp
=
(
(
waveform
[
mask
]
+
limiter_threshold
)
*
limiter_gain
/
(
1
-
limiter_threshold
)
)
output_waveform
[
mask
]
=
(
temp
-
limiter_threshold
+
shift
).
clamp
(
min
=-
limiter_threshold
)
output_waveform
[
~
mask
]
=
(
waveform
[
~
mask
]
+
shift
).
clamp
(
min
=-
1
,
max
=
1
)
else
:
output_waveform
=
(
waveform
+
shift
).
clamp
(
min
=-
1
,
max
=
1
)
return
output_waveform
def
deemph_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
)
->
Tensor
:
r
"""Apply ISO 908 CD de-emphasis (shelving) IIR filter. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, Allowed sample rate ``44100`` or ``48000``
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
if
sample_rate
==
44100
:
central_freq
=
5283
width_slope
=
0.4845
gain
=
-
9.477
elif
sample_rate
==
48000
:
central_freq
=
5356
width_slope
=
0.479
gain
=
-
9.62
else
:
raise
ValueError
(
"Sample rate must be 44100 (audio-CD) or 48000 (DAT)"
)
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
A
=
math
.
exp
(
gain
/
40.0
*
math
.
log
(
10
))
alpha
=
math
.
sin
(
w0
)
/
2
*
math
.
sqrt
((
A
+
1
/
A
)
*
(
1
/
width_slope
-
1
)
+
2
)
temp1
=
2
*
math
.
sqrt
(
A
)
*
alpha
temp2
=
(
A
-
1
)
*
math
.
cos
(
w0
)
temp3
=
(
A
+
1
)
*
math
.
cos
(
w0
)
b0
=
A
*
((
A
+
1
)
+
temp2
+
temp1
)
b1
=
-
2
*
A
*
((
A
-
1
)
+
temp3
)
b2
=
A
*
((
A
+
1
)
+
temp2
-
temp1
)
a0
=
(
A
+
1
)
-
temp2
+
temp1
a1
=
2
*
((
A
-
1
)
-
temp3
)
a2
=
(
A
+
1
)
-
temp2
-
temp1
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
_add_noise_shaping
(
dithered_waveform
:
Tensor
,
waveform
:
Tensor
)
->
Tensor
:
r
"""Noise shaping is calculated by error:
error[n] = dithered[n] - original[n]
noise_shaped_waveform[n] = dithered[n] + error[n-1]
"""
wf_shape
=
waveform
.
size
()
waveform
=
waveform
.
reshape
(
-
1
,
wf_shape
[
-
1
])
dithered_shape
=
dithered_waveform
.
size
()
dithered_waveform
=
dithered_waveform
.
reshape
(
-
1
,
dithered_shape
[
-
1
])
error
=
dithered_waveform
-
waveform
# add error[n-1] to dithered_waveform[n], so offset the error by 1 index
zeros
=
torch
.
zeros
(
1
,
dtype
=
error
.
dtype
,
device
=
error
.
device
)
for
index
in
range
(
error
.
size
()[
0
]):
err
=
error
[
index
]
error_offset
=
torch
.
cat
((
zeros
,
err
))
error
[
index
]
=
error_offset
[:
waveform
.
size
()[
1
]]
noise_shaped
=
dithered_waveform
+
error
return
noise_shaped
.
reshape
(
dithered_shape
[:
-
1
]
+
noise_shaped
.
shape
[
-
1
:])
def
_apply_probability_distribution
(
waveform
:
Tensor
,
density_function
:
str
=
"TPDF"
)
->
Tensor
:
r
"""Apply a probability distribution function on a waveform.
Triangular probability density function (TPDF) dither noise has a
triangular distribution; values in the center of the range have a higher
probability of occurring.
Rectangular probability density function (RPDF) dither noise has a
uniform distribution; any value in the specified range has the same
probability of occurring.
Gaussian probability density function (GPDF) has a normal distribution.
The relationship of probabilities of results follows a bell-shaped,
or Gaussian curve, typical of dither generated by analog sources.
Args:
waveform (Tensor): Tensor of audio of dimension (..., time)
probability_density_function (str, optional): The density function of a
continuous random variable (Default: ``"TPDF"``)
Options: Triangular Probability Density Function - `TPDF`
Rectangular Probability Density Function - `RPDF`
Gaussian Probability Density Function - `GPDF`
Returns:
Tensor: waveform dithered with TPDF
"""
# pack batch
shape
=
waveform
.
size
()
waveform
=
waveform
.
reshape
(
-
1
,
shape
[
-
1
])
channel_size
=
waveform
.
size
()[
0
]
-
1
time_size
=
waveform
.
size
()[
-
1
]
-
1
random_channel
=
(
int
(
torch
.
randint
(
channel_size
,
[
1
,
],
).
item
()
)
if
channel_size
>
0
else
0
)
random_time
=
(
int
(
torch
.
randint
(
time_size
,
[
1
,
],
).
item
()
)
if
time_size
>
0
else
0
)
number_of_bits
=
16
up_scaling
=
2
**
(
number_of_bits
-
1
)
-
2
signal_scaled
=
waveform
*
up_scaling
down_scaling
=
2
**
(
number_of_bits
-
1
)
signal_scaled_dis
=
waveform
if
density_function
==
"RPDF"
:
RPDF
=
waveform
[
random_channel
][
random_time
]
-
0.5
signal_scaled_dis
=
signal_scaled
+
RPDF
elif
density_function
==
"GPDF"
:
# TODO Replace by distribution code once
# https://github.com/pytorch/pytorch/issues/29843 is resolved
# gaussian = torch.distributions.normal.Normal(torch.mean(waveform, -1), 1).sample()
num_rand_variables
=
6
gaussian
=
waveform
[
random_channel
][
random_time
]
for
ws
in
num_rand_variables
*
[
time_size
]:
rand_chan
=
int
(
torch
.
randint
(
channel_size
,
[
1
,
],
).
item
()
)
gaussian
+=
waveform
[
rand_chan
][
int
(
torch
.
randint
(
ws
,
[
1
,
],
).
item
()
)
]
signal_scaled_dis
=
signal_scaled
+
gaussian
else
:
# dtype needed for https://github.com/pytorch/pytorch/issues/32358
TPDF
=
torch
.
bartlett_window
(
time_size
+
1
,
dtype
=
signal_scaled
.
dtype
,
device
=
signal_scaled
.
device
)
TPDF
=
TPDF
.
repeat
((
channel_size
+
1
),
1
)
signal_scaled_dis
=
signal_scaled
+
TPDF
quantised_signal_scaled
=
torch
.
round
(
signal_scaled_dis
)
quantised_signal
=
quantised_signal_scaled
/
down_scaling
# unpack batch
return
quantised_signal
.
reshape
(
shape
[:
-
1
]
+
quantised_signal
.
shape
[
-
1
:])
def
dither
(
waveform
:
Tensor
,
density_function
:
str
=
"TPDF"
,
noise_shaping
:
bool
=
False
)
->
Tensor
:
r
"""Dither increases the perceived dynamic range of audio stored at a
particular bit-depth by eliminating nonlinear truncation distortion
(i.e. adding minimally perceived noise to mask distortion caused by quantization).
Args:
waveform (Tensor): Tensor of audio of dimension (..., time)
density_function (str, optional):
The density function of a continuous random variable. One of
``"TPDF"`` (Triangular Probability Density Function),
``"RPDF"`` (Rectangular Probability Density Function) or
``"GPDF"`` (Gaussian Probability Density Function) (Default: ``"TPDF"``).
noise_shaping (bool, optional): a filtering process that shapes the spectral
energy of quantisation error (Default: ``False``)
Returns:
Tensor: waveform dithered
"""
dithered
=
_apply_probability_distribution
(
waveform
,
density_function
=
density_function
)
if
noise_shaping
:
return
_add_noise_shaping
(
dithered
,
waveform
)
else
:
return
dithered
def
equalizer_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
center_freq
:
float
,
gain
:
float
,
Q
:
float
=
0.707
,
)
->
Tensor
:
r
"""Design biquad peaking equalizer filter and perform filtering. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
center_freq (float): filter's central frequency
gain (float): desired gain at the boost (or attenuation) in dB
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
"""
w0
=
2
*
math
.
pi
*
center_freq
/
sample_rate
A
=
math
.
exp
(
gain
/
40.0
*
math
.
log
(
10
))
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
b0
=
1
+
alpha
*
A
b1
=
-
2
*
math
.
cos
(
w0
)
b2
=
1
-
alpha
*
A
a0
=
1
+
alpha
/
A
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
/
A
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
flanger
(
waveform
:
Tensor
,
sample_rate
:
int
,
delay
:
float
=
0.0
,
depth
:
float
=
2.0
,
regen
:
float
=
0.0
,
width
:
float
=
71.0
,
speed
:
float
=
0.5
,
phase
:
float
=
25.0
,
modulation
:
str
=
"sinusoidal"
,
interpolation
:
str
=
"linear"
,
)
->
Tensor
:
r
"""Apply a flanger effect to the audio. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., channel, time)` .
Max 4 channels allowed
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
delay (float): desired delay in milliseconds(ms)
Allowed range of values are 0 to 30
depth (float): desired delay depth in milliseconds(ms)
Allowed range of values are 0 to 10
regen (float): desired regen(feeback gain) in dB
Allowed range of values are -95 to 95
width (float): desired width(delay gain) in dB
Allowed range of values are 0 to 100
speed (float): modulation speed in Hz
Allowed range of values are 0.1 to 10
phase (float): percentage phase-shift for multi-channel
Allowed range of values are 0 to 100
modulation (str): Use either "sinusoidal" or "triangular" modulation. (Default: ``sinusoidal``)
interpolation (str): Use either "linear" or "quadratic" for delay-line interpolation. (Default: ``linear``)
Returns:
Tensor: Waveform of dimension of `(..., channel, time)`
References:
http://sox.sourceforge.net/sox.html
Scott Lehman, Effects Explained,
https://web.archive.org/web/20051125072557/http://www.harmony-central.com/Effects/effects-explained.html
"""
if
modulation
not
in
(
"sinusoidal"
,
"triangular"
):
raise
ValueError
(
"Only 'sinusoidal' or 'triangular' modulation allowed"
)
if
interpolation
not
in
(
"linear"
,
"quadratic"
):
raise
ValueError
(
"Only 'linear' or 'quadratic' interpolation allowed"
)
actual_shape
=
waveform
.
shape
device
,
dtype
=
waveform
.
device
,
waveform
.
dtype
if
actual_shape
[
-
2
]
>
4
:
raise
ValueError
(
"Max 4 channels allowed"
)
# convert to 3D (batch, channels, time)
waveform
=
waveform
.
view
(
-
1
,
actual_shape
[
-
2
],
actual_shape
[
-
1
])
# Scaling
feedback_gain
=
regen
/
100
delay_gain
=
width
/
100
channel_phase
=
phase
/
100
delay_min
=
delay
/
1000
delay_depth
=
depth
/
1000
n_channels
=
waveform
.
shape
[
-
2
]
if
modulation
==
"sinusoidal"
:
wave_type
=
"SINE"
else
:
wave_type
=
"TRIANGLE"
# Balance output:
in_gain
=
1.0
/
(
1
+
delay_gain
)
delay_gain
=
delay_gain
/
(
1
+
delay_gain
)
# Balance feedback loop:
delay_gain
=
delay_gain
*
(
1
-
abs
(
feedback_gain
))
delay_buf_length
=
int
((
delay_min
+
delay_depth
)
*
sample_rate
+
0.5
)
delay_buf_length
=
delay_buf_length
+
2
delay_bufs
=
torch
.
zeros
(
waveform
.
shape
[
0
],
n_channels
,
delay_buf_length
,
dtype
=
dtype
,
device
=
device
)
delay_last
=
torch
.
zeros
(
waveform
.
shape
[
0
],
n_channels
,
dtype
=
dtype
,
device
=
device
)
lfo_length
=
int
(
sample_rate
/
speed
)
table_min
=
math
.
floor
(
delay_min
*
sample_rate
+
0.5
)
table_max
=
delay_buf_length
-
2.0
lfo
=
_generate_wave_table
(
wave_type
=
wave_type
,
data_type
=
"FLOAT"
,
table_size
=
lfo_length
,
min
=
float
(
table_min
),
max
=
float
(
table_max
),
phase
=
3
*
math
.
pi
/
2
,
device
=
device
,
)
output_waveform
=
torch
.
zeros_like
(
waveform
,
dtype
=
dtype
,
device
=
device
)
delay_buf_pos
=
0
lfo_pos
=
0
channel_idxs
=
torch
.
arange
(
0
,
n_channels
,
device
=
device
)
for
i
in
range
(
waveform
.
shape
[
-
1
]):
delay_buf_pos
=
(
delay_buf_pos
+
delay_buf_length
-
1
)
%
delay_buf_length
cur_channel_phase
=
(
channel_idxs
*
lfo_length
*
channel_phase
+
0.5
).
to
(
torch
.
int64
)
delay_tensor
=
lfo
[(
lfo_pos
+
cur_channel_phase
)
%
lfo_length
]
frac_delay
=
torch
.
frac
(
delay_tensor
)
delay_tensor
=
torch
.
floor
(
delay_tensor
)
int_delay
=
delay_tensor
.
to
(
torch
.
int64
)
temp
=
waveform
[:,
:,
i
]
delay_bufs
[:,
:,
delay_buf_pos
]
=
temp
+
delay_last
*
feedback_gain
delayed_0
=
delay_bufs
[
:,
channel_idxs
,
(
delay_buf_pos
+
int_delay
)
%
delay_buf_length
]
int_delay
=
int_delay
+
1
delayed_1
=
delay_bufs
[
:,
channel_idxs
,
(
delay_buf_pos
+
int_delay
)
%
delay_buf_length
]
int_delay
=
int_delay
+
1
if
interpolation
==
"linear"
:
delayed
=
delayed_0
+
(
delayed_1
-
delayed_0
)
*
frac_delay
else
:
delayed_2
=
delay_bufs
[
:,
channel_idxs
,
(
delay_buf_pos
+
int_delay
)
%
delay_buf_length
]
int_delay
=
int_delay
+
1
delayed_2
=
delayed_2
-
delayed_0
delayed_1
=
delayed_1
-
delayed_0
a
=
delayed_2
*
0.5
-
delayed_1
b
=
delayed_1
*
2
-
delayed_2
*
0.5
delayed
=
delayed_0
+
(
a
*
frac_delay
+
b
)
*
frac_delay
delay_last
=
delayed
output_waveform
[:,
:,
i
]
=
waveform
[:,
:,
i
]
*
in_gain
+
delayed
*
delay_gain
lfo_pos
=
(
lfo_pos
+
1
)
%
lfo_length
return
output_waveform
.
clamp
(
min
=-
1
,
max
=
1
).
view
(
actual_shape
)
def
gain
(
waveform
:
Tensor
,
gain_db
:
float
=
1.0
)
->
Tensor
:
r
"""Apply amplification or attenuation to the whole waveform.
Args:
waveform (Tensor): Tensor of audio of dimension (..., time).
gain_db (float, optional) Gain adjustment in decibels (dB) (Default: ``1.0``).
Returns:
Tensor: the whole waveform amplified by gain_db.
"""
if
gain_db
==
0
:
return
waveform
ratio
=
10
**
(
gain_db
/
20
)
return
waveform
*
ratio
def
highpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
cutoff_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad highpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform dimension of `(..., time)`
"""
w0
=
2
*
math
.
pi
*
cutoff_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2.0
/
Q
b0
=
(
1
+
math
.
cos
(
w0
))
/
2
b1
=
-
1
-
math
.
cos
(
w0
)
b2
=
b0
a0
=
1
+
alpha
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
lfilter
(
waveform
:
Tensor
,
a_coeffs
:
Tensor
,
b_coeffs
:
Tensor
,
clamp
:
bool
=
True
,
)
->
Tensor
:
r
"""Perform an IIR filter by evaluating difference equation.
Args:
waveform (Tensor): audio waveform of dimension of ``(..., time)``. Must be normalized to -1 to 1.
a_coeffs (Tensor): denominator coefficients of difference equation of dimension of ``(n_order + 1)``.
Lower delays coefficients are first, e.g. ``[a0, a1, a2, ...]``.
Must be same size as b_coeffs (pad with 0's as necessary).
b_coeffs (Tensor): numerator coefficients of difference equation of dimension of ``(n_order + 1)``.
Lower delays coefficients are first, e.g. ``[b0, b1, b2, ...]``.
Must be same size as a_coeffs (pad with 0's as necessary).
clamp (bool, optional): If ``True``, clamp the output signal to be in the range [-1, 1] (Default: ``True``)
Returns:
Tensor: Waveform with dimension of ``(..., time)``.
"""
# pack batch
shape
=
waveform
.
size
()
waveform
=
waveform
.
reshape
(
-
1
,
shape
[
-
1
])
assert
a_coeffs
.
size
(
0
)
==
b_coeffs
.
size
(
0
)
assert
len
(
waveform
.
size
())
==
2
assert
waveform
.
device
==
a_coeffs
.
device
assert
b_coeffs
.
device
==
a_coeffs
.
device
device
=
waveform
.
device
dtype
=
waveform
.
dtype
n_channel
,
n_sample
=
waveform
.
size
()
n_order
=
a_coeffs
.
size
(
0
)
n_sample_padded
=
n_sample
+
n_order
-
1
assert
n_order
>
0
# Pad the input and create output
padded_waveform
=
torch
.
zeros
(
n_channel
,
n_sample_padded
,
dtype
=
dtype
,
device
=
device
)
padded_waveform
[:,
n_order
-
1
:]
=
waveform
padded_output_waveform
=
torch
.
zeros
(
n_channel
,
n_sample_padded
,
dtype
=
dtype
,
device
=
device
)
# Set up the coefficients matrix
# Flip coefficients' order
a_coeffs_flipped
=
a_coeffs
.
flip
(
0
)
b_coeffs_flipped
=
b_coeffs
.
flip
(
0
)
# calculate windowed_input_signal in parallel
# create indices of original with shape (n_channel, n_order, n_sample)
window_idxs
=
torch
.
arange
(
n_sample
,
device
=
device
).
unsqueeze
(
0
)
+
torch
.
arange
(
n_order
,
device
=
device
).
unsqueeze
(
1
)
window_idxs
=
window_idxs
.
repeat
(
n_channel
,
1
,
1
)
window_idxs
+=
(
torch
.
arange
(
n_channel
,
device
=
device
).
unsqueeze
(
-
1
).
unsqueeze
(
-
1
)
*
n_sample_padded
)
window_idxs
=
window_idxs
.
long
()
# (n_order, ) matmul (n_channel, n_order, n_sample) -> (n_channel, n_sample)
input_signal_windows
=
torch
.
matmul
(
b_coeffs_flipped
,
torch
.
take
(
padded_waveform
,
window_idxs
)
)
input_signal_windows
.
div_
(
a_coeffs
[
0
])
a_coeffs_flipped
.
div_
(
a_coeffs
[
0
])
for
i_sample
,
o0
in
enumerate
(
input_signal_windows
.
t
()):
windowed_output_signal
=
padded_output_waveform
[
:,
i_sample
:
i_sample
+
n_order
]
o0
.
addmv_
(
windowed_output_signal
,
a_coeffs_flipped
,
alpha
=-
1
)
padded_output_waveform
[:,
i_sample
+
n_order
-
1
]
=
o0
output
=
padded_output_waveform
[:,
n_order
-
1
:]
if
clamp
:
output
=
torch
.
clamp
(
output
,
min
=-
1.0
,
max
=
1.0
)
# unpack batch
output
=
output
.
reshape
(
shape
[:
-
1
]
+
output
.
shape
[
-
1
:])
return
output
def
lowpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
cutoff_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad lowpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
"""
w0
=
2
*
math
.
pi
*
cutoff_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
b0
=
(
1
-
math
.
cos
(
w0
))
/
2
b1
=
1
-
math
.
cos
(
w0
)
b2
=
b0
a0
=
1
+
alpha
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
overdrive
(
waveform
:
Tensor
,
gain
:
float
=
20
,
colour
:
float
=
20
)
->
Tensor
:
r
"""Apply a overdrive effect to the audio. Similar to SoX implementation.
This effect applies a non linear distortion to the audio signal.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
gain (float): desired gain at the boost (or attenuation) in dB
Allowed range of values are 0 to 100
colour (float): controls the amount of even harmonic content in the over-driven output
Allowed range of values are 0 to 100
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
"""
actual_shape
=
waveform
.
shape
device
,
dtype
=
waveform
.
device
,
waveform
.
dtype
# convert to 2D (..,time)
waveform
=
waveform
.
view
(
-
1
,
actual_shape
[
-
1
])
gain
=
_dB2Linear
(
gain
)
colour
=
colour
/
200
last_in
=
torch
.
zeros
(
waveform
.
shape
[:
-
1
],
dtype
=
dtype
,
device
=
device
)
last_out
=
torch
.
zeros
(
waveform
.
shape
[:
-
1
],
dtype
=
dtype
,
device
=
device
)
temp
=
waveform
*
gain
+
colour
mask1
=
temp
<
-
1
temp
[
mask1
]
=
torch
.
tensor
(
-
2.0
/
3.0
,
dtype
=
dtype
,
device
=
device
)
# Wrapping the constant with Tensor is required for Torchscript
mask2
=
temp
>
1
temp
[
mask2
]
=
torch
.
tensor
(
2.0
/
3.0
,
dtype
=
dtype
,
device
=
device
)
mask3
=
~
mask1
&
~
mask2
temp
[
mask3
]
=
temp
[
mask3
]
-
(
temp
[
mask3
]
**
3
)
*
(
1.0
/
3
)
output_waveform
=
torch
.
zeros_like
(
waveform
,
dtype
=
dtype
,
device
=
device
)
# TODO: Implement a torch CPP extension
for
i
in
range
(
waveform
.
shape
[
-
1
]):
last_out
=
temp
[:,
i
]
-
last_in
+
0.995
*
last_out
last_in
=
temp
[:,
i
]
output_waveform
[:,
i
]
=
waveform
[:,
i
]
*
0.5
+
last_out
*
0.75
return
output_waveform
.
clamp
(
min
=-
1
,
max
=
1
).
view
(
actual_shape
)
def
phaser
(
waveform
:
Tensor
,
sample_rate
:
int
,
gain_in
:
float
=
0.4
,
gain_out
:
float
=
0.74
,
delay_ms
:
float
=
3.0
,
decay
:
float
=
0.4
,
mod_speed
:
float
=
0.5
,
sinusoidal
:
bool
=
True
,
)
->
Tensor
:
r
"""Apply a phasing effect to the audio. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
gain_in (float): desired input gain at the boost (or attenuation) in dB
Allowed range of values are 0 to 1
gain_out (float): desired output gain at the boost (or attenuation) in dB
Allowed range of values are 0 to 1e9
delay_ms (float): desired delay in milli seconds
Allowed range of values are 0 to 5.0
decay (float): desired decay relative to gain-in
Allowed range of values are 0 to 0.99
mod_speed (float): modulation speed in Hz
Allowed range of values are 0.1 to 2
sinusoidal (bool): If ``True``, uses sinusoidal modulation (preferable for multiple instruments)
If ``False``, uses triangular modulation (gives single instruments a sharper phasing effect)
(Default: ``True``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
Scott Lehman, Effects Explained, http://harmony-central.com/Effects/effects-explained.html
"""
actual_shape
=
waveform
.
shape
device
,
dtype
=
waveform
.
device
,
waveform
.
dtype
# convert to 2D (channels,time)
waveform
=
waveform
.
view
(
-
1
,
actual_shape
[
-
1
])
delay_buf_len
=
int
((
delay_ms
*
0.001
*
sample_rate
)
+
0.5
)
delay_buf
=
torch
.
zeros
(
waveform
.
shape
[
0
],
delay_buf_len
,
dtype
=
dtype
,
device
=
device
)
mod_buf_len
=
int
(
sample_rate
/
mod_speed
+
0.5
)
if
sinusoidal
:
wave_type
=
"SINE"
else
:
wave_type
=
"TRIANGLE"
mod_buf
=
_generate_wave_table
(
wave_type
=
wave_type
,
data_type
=
"INT"
,
table_size
=
mod_buf_len
,
min
=
1.0
,
max
=
float
(
delay_buf_len
),
phase
=
math
.
pi
/
2
,
device
=
device
,
)
delay_pos
=
0
mod_pos
=
0
output_waveform_pre_gain_list
=
[]
waveform
=
waveform
*
gain_in
delay_buf
=
delay_buf
*
decay
waveform_list
=
[
waveform
[:,
i
]
for
i
in
range
(
waveform
.
size
(
1
))]
delay_buf_list
=
[
delay_buf
[:,
i
]
for
i
in
range
(
delay_buf
.
size
(
1
))]
mod_buf_list
=
[
mod_buf
[
i
]
for
i
in
range
(
mod_buf
.
size
(
0
))]
for
i
in
range
(
waveform
.
shape
[
-
1
]):
idx
=
int
((
delay_pos
+
mod_buf_list
[
mod_pos
])
%
delay_buf_len
)
mod_pos
=
(
mod_pos
+
1
)
%
mod_buf_len
delay_pos
=
(
delay_pos
+
1
)
%
delay_buf_len
temp
=
(
waveform_list
[
i
])
+
(
delay_buf_list
[
idx
])
delay_buf_list
[
delay_pos
]
=
temp
*
decay
output_waveform_pre_gain_list
.
append
(
temp
)
output_waveform
=
torch
.
stack
(
output_waveform_pre_gain_list
,
dim
=
1
).
to
(
dtype
=
dtype
,
device
=
device
)
output_waveform
.
mul_
(
gain_out
)
return
output_waveform
.
clamp
(
min
=-
1
,
max
=
1
).
view
(
actual_shape
)
def
riaa_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
)
->
Tensor
:
r
"""Apply RIAA vinyl playback equalisation. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz).
Allowed sample rates in Hz : ``44100``,``48000``,``88200``,``96000``
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
if
sample_rate
==
44100
:
zeros
=
[
-
0.2014898
,
0.9233820
]
poles
=
[
0.7083149
,
0.9924091
]
elif
sample_rate
==
48000
:
zeros
=
[
-
0.1766069
,
0.9321590
]
poles
=
[
0.7396325
,
0.9931330
]
elif
sample_rate
==
88200
:
zeros
=
[
-
0.1168735
,
0.9648312
]
poles
=
[
0.8590646
,
0.9964002
]
elif
sample_rate
==
96000
:
zeros
=
[
-
0.1141486
,
0.9676817
]
poles
=
[
0.8699137
,
0.9966946
]
else
:
raise
ValueError
(
"Sample rate must be 44.1k, 48k, 88.2k, or 96k"
)
# polynomial coefficients with roots zeros[0] and zeros[1]
b0
=
1.0
b1
=
-
(
zeros
[
0
]
+
zeros
[
1
])
b2
=
zeros
[
0
]
*
zeros
[
1
]
# polynomial coefficients with roots poles[0] and poles[1]
a0
=
1.0
a1
=
-
(
poles
[
0
]
+
poles
[
1
])
a2
=
poles
[
0
]
*
poles
[
1
]
# Normalise to 0dB at 1kHz
y
=
2
*
math
.
pi
*
1000
/
sample_rate
b_re
=
b0
+
b1
*
math
.
cos
(
-
y
)
+
b2
*
math
.
cos
(
-
2
*
y
)
a_re
=
a0
+
a1
*
math
.
cos
(
-
y
)
+
a2
*
math
.
cos
(
-
2
*
y
)
b_im
=
b1
*
math
.
sin
(
-
y
)
+
b2
*
math
.
sin
(
-
2
*
y
)
a_im
=
a1
*
math
.
sin
(
-
y
)
+
a2
*
math
.
sin
(
-
2
*
y
)
g
=
1
/
math
.
sqrt
((
b_re
**
2
+
b_im
**
2
)
/
(
a_re
**
2
+
a_im
**
2
))
b0
*=
g
b1
*=
g
b2
*=
g
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
treble_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
gain
:
float
,
central_freq
:
float
=
3000
,
Q
:
float
=
0.707
,
)
->
Tensor
:
r
"""Design a treble tone-control effect. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
gain (float): desired gain at the boost (or attenuation) in dB.
central_freq (float, optional): central frequency (in Hz). (Default: ``3000``)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``).
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
A
=
math
.
exp
(
gain
/
40
*
math
.
log
(
10
))
temp1
=
2
*
math
.
sqrt
(
A
)
*
alpha
temp2
=
(
A
-
1
)
*
math
.
cos
(
w0
)
temp3
=
(
A
+
1
)
*
math
.
cos
(
w0
)
b0
=
A
*
((
A
+
1
)
+
temp2
+
temp1
)
b1
=
-
2
*
A
*
((
A
-
1
)
+
temp3
)
b2
=
A
*
((
A
+
1
)
+
temp2
-
temp1
)
a0
=
(
A
+
1
)
-
temp2
+
temp1
a1
=
2
*
((
A
-
1
)
-
temp3
)
a2
=
(
A
+
1
)
-
temp2
-
temp1
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
_measure
(
measure_len_ws
:
int
,
samples
:
Tensor
,
spectrum
:
Tensor
,
noise_spectrum
:
Tensor
,
spectrum_window
:
Tensor
,
spectrum_start
:
int
,
spectrum_end
:
int
,
cepstrum_window
:
Tensor
,
cepstrum_start
:
int
,
cepstrum_end
:
int
,
noise_reduction_amount
:
float
,
measure_smooth_time_mult
:
float
,
noise_up_time_mult
:
float
,
noise_down_time_mult
:
float
,
index_ns
:
int
,
boot_count
:
int
,
)
->
float
:
assert
spectrum
.
size
()[
-
1
]
==
noise_spectrum
.
size
()[
-
1
]
samplesLen_ns
=
samples
.
size
()[
-
1
]
dft_len_ws
=
spectrum
.
size
()[
-
1
]
dftBuf
=
torch
.
zeros
(
dft_len_ws
)
_index_ns
=
torch
.
tensor
(
[
index_ns
]
+
[(
index_ns
+
i
)
%
samplesLen_ns
for
i
in
range
(
1
,
measure_len_ws
)]
)
dftBuf
[:
measure_len_ws
]
=
samples
[
_index_ns
]
*
spectrum_window
[:
measure_len_ws
]
# memset(c->dftBuf + i, 0, (p->dft_len_ws - i) * sizeof(*c->dftBuf));
dftBuf
[
measure_len_ws
:
dft_len_ws
].
zero_
()
# lsx_safe_rdft((int)p->dft_len_ws, 1, c->dftBuf);
_dftBuf
=
torchaudio
.
_internal
.
fft
.
rfft
(
dftBuf
)
# memset(c->dftBuf, 0, p->spectrum_start * sizeof(*c->dftBuf));
_dftBuf
[:
spectrum_start
].
zero_
()
mult
:
float
=
(
boot_count
/
(
1.0
+
boot_count
)
if
boot_count
>=
0
else
measure_smooth_time_mult
)
_d
=
_dftBuf
[
spectrum_start
:
spectrum_end
].
abs
()
spectrum
[
spectrum_start
:
spectrum_end
].
mul_
(
mult
).
add_
(
_d
*
(
1
-
mult
))
_d
=
spectrum
[
spectrum_start
:
spectrum_end
]
**
2
_zeros
=
torch
.
zeros
(
spectrum_end
-
spectrum_start
)
_mult
=
(
_zeros
if
boot_count
>=
0
else
torch
.
where
(
_d
>
noise_spectrum
[
spectrum_start
:
spectrum_end
],
torch
.
tensor
(
noise_up_time_mult
),
# if
torch
.
tensor
(
noise_down_time_mult
),
# else
)
)
noise_spectrum
[
spectrum_start
:
spectrum_end
].
mul_
(
_mult
).
add_
(
_d
*
(
1
-
_mult
))
_d
=
torch
.
sqrt
(
torch
.
max
(
_zeros
,
_d
-
noise_reduction_amount
*
noise_spectrum
[
spectrum_start
:
spectrum_end
],
)
)
_cepstrum_Buf
:
Tensor
=
torch
.
zeros
(
dft_len_ws
>>
1
)
_cepstrum_Buf
[
spectrum_start
:
spectrum_end
]
=
_d
*
cepstrum_window
_cepstrum_Buf
[
spectrum_end
:
dft_len_ws
>>
1
].
zero_
()
# lsx_safe_rdft((int)p->dft_len_ws >> 1, 1, c->dftBuf);
_cepstrum_Buf
=
torchaudio
.
_internal
.
fft
.
rfft
(
_cepstrum_Buf
)
result
:
float
=
float
(
torch
.
sum
(
_cepstrum_Buf
[
cepstrum_start
:
cepstrum_end
].
abs
().
pow
(
2
))
)
result
=
(
math
.
log
(
result
/
(
cepstrum_end
-
cepstrum_start
))
if
result
>
0
else
-
math
.
inf
)
return
max
(
0
,
21
+
result
)
def
vad
(
waveform
:
Tensor
,
sample_rate
:
int
,
trigger_level
:
float
=
7.0
,
trigger_time
:
float
=
0.25
,
search_time
:
float
=
1.0
,
allowed_gap
:
float
=
0.25
,
pre_trigger_time
:
float
=
0.0
,
# Fine-tuning parameters
boot_time
:
float
=
0.35
,
noise_up_time
:
float
=
0.1
,
noise_down_time
:
float
=
0.01
,
noise_reduction_amount
:
float
=
1.35
,
measure_freq
:
float
=
20.0
,
measure_duration
:
Optional
[
float
]
=
None
,
measure_smooth_time
:
float
=
0.4
,
hp_filter_freq
:
float
=
50.0
,
lp_filter_freq
:
float
=
6000.0
,
hp_lifter_freq
:
float
=
150.0
,
lp_lifter_freq
:
float
=
2000.0
,
)
->
Tensor
:
r
"""Voice Activity Detector. Similar to SoX implementation.
Attempts to trim silence and quiet background sounds from the ends of recordings of speech.
The algorithm currently uses a simple cepstral power measurement to detect voice,
so may be fooled by other things, especially music.
The effect can trim only from the front of the audio,
so in order to trim from the back, the reverse effect must also be used.
Args:
waveform (Tensor): Tensor of audio of dimension `(..., time)`
sample_rate (int): Sample rate of audio signal.
trigger_level (float, optional): The measurement level used to trigger activity detection.
This may need to be cahnged depending on the noise level, signal level,
and other characteristics of the input audio. (Default: 7.0)
trigger_time (float, optional): The time constant (in seconds)
used to help ignore short bursts of sound. (Default: 0.25)
search_time (float, optional): The amount of audio (in seconds)
to search for quieter/shorter bursts of audio to include prior
to the detected trigger point. (Default: 1.0)
allowed_gap (float, optional): The allowed gap (in seconds) between
quiteter/shorter bursts of audio to include prior
to the detected trigger point. (Default: 0.25)
pre_trigger_time (float, optional): The amount of audio (in seconds) to preserve
before the trigger point and any found quieter/shorter bursts. (Default: 0.0)
boot_time (float, optional) The algorithm (internally) uses adaptive noise
estimation/reduction in order to detect the start of the wanted audio.
This option sets the time for the initial noise estimate. (Default: 0.35)
noise_up_time (float, optional) Time constant used by the adaptive noise estimator
for when the noise level is increasing. (Default: 0.1)
noise_down_time (float, optional) Time constant used by the adaptive noise estimator
for when the noise level is decreasing. (Default: 0.01)
noise_reduction_amount (float, optional) Amount of noise reduction to use in
the detection algorithm (e.g. 0, 0.5, ...). (Default: 1.35)
measure_freq (float, optional) Frequency of the algorithm’s
processing/measurements. (Default: 20.0)
measure_duration: (float, optional) Measurement duration.
(Default: Twice the measurement period; i.e. with overlap.)
measure_smooth_time (float, optional) Time constant used to smooth
spectral measurements. (Default: 0.4)
hp_filter_freq (float, optional) "Brick-wall" frequency of high-pass filter applied
at the input to the detector algorithm. (Default: 50.0)
lp_filter_freq (float, optional) "Brick-wall" frequency of low-pass filter applied
at the input to the detector algorithm. (Default: 6000.0)
hp_lifter_freq (float, optional) "Brick-wall" frequency of high-pass lifter used
in the detector algorithm. (Default: 150.0)
lp_lifter_freq (float, optional) "Brick-wall" frequency of low-pass lifter used
in the detector algorithm. (Default: 2000.0)
Returns:
Tensor: Tensor of audio of dimension (..., time).
References:
http://sox.sourceforge.net/sox.html
"""
measure_duration
:
float
=
(
2.0
/
measure_freq
if
measure_duration
is
None
else
measure_duration
)
measure_len_ws
=
int
(
sample_rate
*
measure_duration
+
0.5
)
measure_len_ns
=
measure_len_ws
# for (dft_len_ws = 16; dft_len_ws < measure_len_ws; dft_len_ws <<= 1);
dft_len_ws
=
16
while
dft_len_ws
<
measure_len_ws
:
dft_len_ws
*=
2
measure_period_ns
=
int
(
sample_rate
/
measure_freq
+
0.5
)
measures_len
=
math
.
ceil
(
search_time
*
measure_freq
)
search_pre_trigger_len_ns
=
measures_len
*
measure_period_ns
gap_len
=
int
(
allowed_gap
*
measure_freq
+
0.5
)
fixed_pre_trigger_len_ns
=
int
(
pre_trigger_time
*
sample_rate
+
0.5
)
samplesLen_ns
=
(
fixed_pre_trigger_len_ns
+
search_pre_trigger_len_ns
+
measure_len_ns
)
spectrum_window
=
torch
.
zeros
(
measure_len_ws
)
for
i
in
range
(
measure_len_ws
):
# sox.h:741 define SOX_SAMPLE_MIN (sox_sample_t)SOX_INT_MIN(32)
spectrum_window
[
i
]
=
2.0
/
math
.
sqrt
(
float
(
measure_len_ws
))
# lsx_apply_hann(spectrum_window, (int)measure_len_ws);
spectrum_window
*=
torch
.
hann_window
(
measure_len_ws
,
dtype
=
torch
.
float
)
spectrum_start
:
int
=
int
(
hp_filter_freq
/
sample_rate
*
dft_len_ws
+
0.5
)
spectrum_start
:
int
=
max
(
spectrum_start
,
1
)
spectrum_end
:
int
=
int
(
lp_filter_freq
/
sample_rate
*
dft_len_ws
+
0.5
)
spectrum_end
:
int
=
min
(
spectrum_end
,
dft_len_ws
//
2
)
cepstrum_window
=
torch
.
zeros
(
spectrum_end
-
spectrum_start
)
for
i
in
range
(
spectrum_end
-
spectrum_start
):
cepstrum_window
[
i
]
=
2.0
/
math
.
sqrt
(
float
(
spectrum_end
)
-
spectrum_start
)
# lsx_apply_hann(cepstrum_window,(int)(spectrum_end - spectrum_start));
cepstrum_window
*=
torch
.
hann_window
(
spectrum_end
-
spectrum_start
,
dtype
=
torch
.
float
)
cepstrum_start
=
math
.
ceil
(
sample_rate
*
0.5
/
lp_lifter_freq
)
cepstrum_end
=
math
.
floor
(
sample_rate
*
0.5
/
hp_lifter_freq
)
cepstrum_end
=
min
(
cepstrum_end
,
dft_len_ws
//
4
)
assert
cepstrum_end
>
cepstrum_start
noise_up_time_mult
=
math
.
exp
(
-
1.0
/
(
noise_up_time
*
measure_freq
))
noise_down_time_mult
=
math
.
exp
(
-
1.0
/
(
noise_down_time
*
measure_freq
))
measure_smooth_time_mult
=
math
.
exp
(
-
1.0
/
(
measure_smooth_time
*
measure_freq
))
trigger_meas_time_mult
=
math
.
exp
(
-
1.0
/
(
trigger_time
*
measure_freq
))
boot_count_max
=
int
(
boot_time
*
measure_freq
-
0.5
)
measure_timer_ns
=
measure_len_ns
boot_count
=
measures_index
=
flushedLen_ns
=
samplesIndex_ns
=
0
# pack batch
shape
=
waveform
.
size
()
waveform
=
waveform
.
view
(
-
1
,
shape
[
-
1
])
n_channels
,
ilen
=
waveform
.
size
()
mean_meas
=
torch
.
zeros
(
n_channels
)
samples
=
torch
.
zeros
(
n_channels
,
samplesLen_ns
)
spectrum
=
torch
.
zeros
(
n_channels
,
dft_len_ws
)
noise_spectrum
=
torch
.
zeros
(
n_channels
,
dft_len_ws
)
measures
=
torch
.
zeros
(
n_channels
,
measures_len
)
has_triggered
:
bool
=
False
num_measures_to_flush
:
int
=
0
pos
:
int
=
0
while
pos
<
ilen
and
not
has_triggered
:
measure_timer_ns
-=
1
for
i
in
range
(
n_channels
):
samples
[
i
,
samplesIndex_ns
]
=
waveform
[
i
,
pos
]
# if (!p->measure_timer_ns) {
if
measure_timer_ns
==
0
:
index_ns
:
int
=
(
samplesIndex_ns
+
samplesLen_ns
-
measure_len_ns
)
%
samplesLen_ns
meas
:
float
=
_measure
(
measure_len_ws
=
measure_len_ws
,
samples
=
samples
[
i
],
spectrum
=
spectrum
[
i
],
noise_spectrum
=
noise_spectrum
[
i
],
spectrum_window
=
spectrum_window
,
spectrum_start
=
spectrum_start
,
spectrum_end
=
spectrum_end
,
cepstrum_window
=
cepstrum_window
,
cepstrum_start
=
cepstrum_start
,
cepstrum_end
=
cepstrum_end
,
noise_reduction_amount
=
noise_reduction_amount
,
measure_smooth_time_mult
=
measure_smooth_time_mult
,
noise_up_time_mult
=
noise_up_time_mult
,
noise_down_time_mult
=
noise_down_time_mult
,
index_ns
=
index_ns
,
boot_count
=
boot_count
,
)
measures
[
i
,
measures_index
]
=
meas
mean_meas
[
i
]
=
mean_meas
[
i
]
*
trigger_meas_time_mult
+
meas
*
(
1.0
-
trigger_meas_time_mult
)
has_triggered
=
has_triggered
or
(
mean_meas
[
i
]
>=
trigger_level
)
if
has_triggered
:
n
:
int
=
measures_len
k
:
int
=
measures_index
jTrigger
:
int
=
n
jZero
:
int
=
n
j
:
int
=
0
for
j
in
range
(
n
):
if
(
measures
[
i
,
k
]
>=
trigger_level
)
and
(
j
<=
jTrigger
+
gap_len
):
jZero
=
jTrigger
=
j
elif
(
measures
[
i
,
k
]
==
0
)
and
(
jTrigger
>=
jZero
):
jZero
=
j
k
=
(
k
+
n
-
1
)
%
n
j
=
min
(
j
,
jZero
)
# num_measures_to_flush = range_limit(j, num_measures_to_flush, n);
num_measures_to_flush
=
min
(
max
(
num_measures_to_flush
,
j
),
n
)
# end if has_triggered
# end if (measure_timer_ns == 0):
# end for
samplesIndex_ns
+=
1
pos
+=
1
# end while
if
samplesIndex_ns
==
samplesLen_ns
:
samplesIndex_ns
=
0
if
measure_timer_ns
==
0
:
measure_timer_ns
=
measure_period_ns
measures_index
+=
1
measures_index
=
measures_index
%
measures_len
if
boot_count
>=
0
:
boot_count
=
-
1
if
boot_count
==
boot_count_max
else
boot_count
+
1
if
has_triggered
:
flushedLen_ns
=
(
measures_len
-
num_measures_to_flush
)
*
measure_period_ns
samplesIndex_ns
=
(
samplesIndex_ns
+
flushedLen_ns
)
%
samplesLen_ns
res
=
waveform
[:,
pos
-
samplesLen_ns
+
flushedLen_ns
:]
# unpack batch
return
res
.
view
(
shape
[:
-
1
]
+
res
.
shape
[
-
1
:])
torchaudio/functional/functional.py
View file @
5e54c770
...
...
@@ -6,7 +6,6 @@ import warnings
import
torch
from
torch
import
Tensor
import
torchaudio._internal.fft
__all__
=
[
"spectrogram"
,
...
...
@@ -16,37 +15,19 @@ __all__ = [
"compute_deltas"
,
"create_fb_matrix"
,
"create_dct"
,
"compute_deltas"
,
"detect_pitch_frequency"
,
"DB_to_amplitude"
,
"mu_law_encoding"
,
"mu_law_decoding"
,
"complex_norm"
,
"angle"
,
"magphase"
,
"dither"
,
"gain"
,
"phase_vocoder"
,
"lfilter"
,
"lowpass_biquad"
,
"highpass_biquad"
,
"allpass_biquad"
,
"bandpass_biquad"
,
"bandreject_biquad"
,
"equalizer_biquad"
,
"band_biquad"
,
"treble_biquad"
,
"bass_biquad"
,
"deemph_biquad"
,
"riaa_biquad"
,
"biquad"
,
"contrast"
,
"dcshift"
,
"overdrive"
,
"phaser"
,
"flanger"
,
"detect_pitch_frequency"
,
'mask_along_axis'
,
'mask_along_axis_iid'
,
'sliding_window_cmn'
,
'vad'
,
]
...
...
@@ -537,967 +518,6 @@ def phase_vocoder(
return
complex_specgrams_stretch
def
lfilter
(
waveform
:
Tensor
,
a_coeffs
:
Tensor
,
b_coeffs
:
Tensor
,
clamp
:
bool
=
True
,
)
->
Tensor
:
r
"""Perform an IIR filter by evaluating difference equation.
Args:
waveform (Tensor): audio waveform of dimension of ``(..., time)``. Must be normalized to -1 to 1.
a_coeffs (Tensor): denominator coefficients of difference equation of dimension of ``(n_order + 1)``.
Lower delays coefficients are first, e.g. ``[a0, a1, a2, ...]``.
Must be same size as b_coeffs (pad with 0's as necessary).
b_coeffs (Tensor): numerator coefficients of difference equation of dimension of ``(n_order + 1)``.
Lower delays coefficients are first, e.g. ``[b0, b1, b2, ...]``.
Must be same size as a_coeffs (pad with 0's as necessary).
clamp (bool, optional): If ``True``, clamp the output signal to be in the range [-1, 1] (Default: ``True``)
Returns:
Tensor: Waveform with dimension of ``(..., time)``.
"""
# pack batch
shape
=
waveform
.
size
()
waveform
=
waveform
.
reshape
(
-
1
,
shape
[
-
1
])
assert
(
a_coeffs
.
size
(
0
)
==
b_coeffs
.
size
(
0
))
assert
(
len
(
waveform
.
size
())
==
2
)
assert
(
waveform
.
device
==
a_coeffs
.
device
)
assert
(
b_coeffs
.
device
==
a_coeffs
.
device
)
device
=
waveform
.
device
dtype
=
waveform
.
dtype
n_channel
,
n_sample
=
waveform
.
size
()
n_order
=
a_coeffs
.
size
(
0
)
n_sample_padded
=
n_sample
+
n_order
-
1
assert
(
n_order
>
0
)
# Pad the input and create output
padded_waveform
=
torch
.
zeros
(
n_channel
,
n_sample_padded
,
dtype
=
dtype
,
device
=
device
)
padded_waveform
[:,
(
n_order
-
1
):]
=
waveform
padded_output_waveform
=
torch
.
zeros
(
n_channel
,
n_sample_padded
,
dtype
=
dtype
,
device
=
device
)
# Set up the coefficients matrix
# Flip coefficients' order
a_coeffs_flipped
=
a_coeffs
.
flip
(
0
)
b_coeffs_flipped
=
b_coeffs
.
flip
(
0
)
# calculate windowed_input_signal in parallel
# create indices of original with shape (n_channel, n_order, n_sample)
window_idxs
=
torch
.
arange
(
n_sample
,
device
=
device
).
unsqueeze
(
0
)
+
torch
.
arange
(
n_order
,
device
=
device
).
unsqueeze
(
1
)
window_idxs
=
window_idxs
.
repeat
(
n_channel
,
1
,
1
)
window_idxs
+=
(
torch
.
arange
(
n_channel
,
device
=
device
).
unsqueeze
(
-
1
).
unsqueeze
(
-
1
)
*
n_sample_padded
)
window_idxs
=
window_idxs
.
long
()
# (n_order, ) matmul (n_channel, n_order, n_sample) -> (n_channel, n_sample)
input_signal_windows
=
torch
.
matmul
(
b_coeffs_flipped
,
torch
.
take
(
padded_waveform
,
window_idxs
))
input_signal_windows
.
div_
(
a_coeffs
[
0
])
a_coeffs_flipped
.
div_
(
a_coeffs
[
0
])
for
i_sample
,
o0
in
enumerate
(
input_signal_windows
.
t
()):
windowed_output_signal
=
padded_output_waveform
[:,
i_sample
:(
i_sample
+
n_order
)]
o0
.
addmv_
(
windowed_output_signal
,
a_coeffs_flipped
,
alpha
=-
1
)
padded_output_waveform
[:,
i_sample
+
n_order
-
1
]
=
o0
output
=
padded_output_waveform
[:,
(
n_order
-
1
):]
if
clamp
:
output
=
torch
.
clamp
(
output
,
min
=-
1.
,
max
=
1.
)
# unpack batch
output
=
output
.
reshape
(
shape
[:
-
1
]
+
output
.
shape
[
-
1
:])
return
output
def
biquad
(
waveform
:
Tensor
,
b0
:
float
,
b1
:
float
,
b2
:
float
,
a0
:
float
,
a1
:
float
,
a2
:
float
)
->
Tensor
:
r
"""Perform a biquad filter of input tensor. Initial conditions set to 0.
https://en.wikipedia.org/wiki/Digital_biquad_filter
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
b0 (float): numerator coefficient of current input, x[n]
b1 (float): numerator coefficient of input one time step ago x[n-1]
b2 (float): numerator coefficient of input two time steps ago x[n-2]
a0 (float): denominator coefficient of current output y[n], typically 1
a1 (float): denominator coefficient of current output y[n-1]
a2 (float): denominator coefficient of current output y[n-2]
Returns:
Tensor: Waveform with dimension of `(..., time)`
"""
device
=
waveform
.
device
dtype
=
waveform
.
dtype
output_waveform
=
lfilter
(
waveform
,
torch
.
tensor
([
a0
,
a1
,
a2
],
dtype
=
dtype
,
device
=
device
),
torch
.
tensor
([
b0
,
b1
,
b2
],
dtype
=
dtype
,
device
=
device
)
)
return
output_waveform
def
_dB2Linear
(
x
:
float
)
->
float
:
return
math
.
exp
(
x
*
math
.
log
(
10
)
/
20.0
)
def
highpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
cutoff_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad highpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform dimension of `(..., time)`
"""
w0
=
2
*
math
.
pi
*
cutoff_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2.
/
Q
b0
=
(
1
+
math
.
cos
(
w0
))
/
2
b1
=
-
1
-
math
.
cos
(
w0
)
b2
=
b0
a0
=
1
+
alpha
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
lowpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
cutoff_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad lowpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
"""
w0
=
2
*
math
.
pi
*
cutoff_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
b0
=
(
1
-
math
.
cos
(
w0
))
/
2
b1
=
1
-
math
.
cos
(
w0
)
b2
=
b0
a0
=
1
+
alpha
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
allpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design two-pole all-pass filter. Similar to SoX implementation.
Args:
waveform(torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
b0
=
1
-
alpha
b1
=
-
2
*
math
.
cos
(
w0
)
b2
=
1
+
alpha
a0
=
1
+
alpha
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
bandpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
,
const_skirt_gain
:
bool
=
False
)
->
Tensor
:
r
"""Design two-pole band-pass filter. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
const_skirt_gain (bool, optional) : If ``True``, uses a constant skirt gain (peak gain = Q).
If ``False``, uses a constant 0dB peak gain. (Default: ``False``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
temp
=
math
.
sin
(
w0
)
/
2
if
const_skirt_gain
else
alpha
b0
=
temp
b1
=
0.
b2
=
-
temp
a0
=
1
+
alpha
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
bandreject_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design two-pole band-reject filter. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
b0
=
1.
b1
=
-
2
*
math
.
cos
(
w0
)
b2
=
1.
a0
=
1
+
alpha
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
equalizer_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
center_freq
:
float
,
gain
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad peaking equalizer filter and perform filtering. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
center_freq (float): filter's central frequency
gain (float): desired gain at the boost (or attenuation) in dB
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
"""
w0
=
2
*
math
.
pi
*
center_freq
/
sample_rate
A
=
math
.
exp
(
gain
/
40.0
*
math
.
log
(
10
))
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
b0
=
1
+
alpha
*
A
b1
=
-
2
*
math
.
cos
(
w0
)
b2
=
1
-
alpha
*
A
a0
=
1
+
alpha
/
A
a1
=
-
2
*
math
.
cos
(
w0
)
a2
=
1
-
alpha
/
A
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
band_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
,
noise
:
bool
=
False
)
->
Tensor
:
r
"""Design two-pole band filter. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``).
noise (bool, optional) : If ``True``, uses the alternate mode for un-pitched audio (e.g. percussion).
If ``False``, uses mode oriented to pitched audio, i.e. voice, singing,
or instrumental music (Default: ``False``).
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
bw_Hz
=
central_freq
/
Q
a0
=
1.
a2
=
math
.
exp
(
-
2
*
math
.
pi
*
bw_Hz
/
sample_rate
)
a1
=
-
4
*
a2
/
(
1
+
a2
)
*
math
.
cos
(
w0
)
b0
=
math
.
sqrt
(
1
-
a1
*
a1
/
(
4
*
a2
))
*
(
1
-
a2
)
if
noise
:
mult
=
math
.
sqrt
(((
1
+
a2
)
*
(
1
+
a2
)
-
a1
*
a1
)
*
(
1
-
a2
)
/
(
1
+
a2
))
/
b0
b0
*=
mult
b1
=
0.
b2
=
0.
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
treble_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
gain
:
float
,
central_freq
:
float
=
3000
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design a treble tone-control effect. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
gain (float): desired gain at the boost (or attenuation) in dB.
central_freq (float, optional): central frequency (in Hz). (Default: ``3000``)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``).
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
A
=
math
.
exp
(
gain
/
40
*
math
.
log
(
10
))
temp1
=
2
*
math
.
sqrt
(
A
)
*
alpha
temp2
=
(
A
-
1
)
*
math
.
cos
(
w0
)
temp3
=
(
A
+
1
)
*
math
.
cos
(
w0
)
b0
=
A
*
((
A
+
1
)
+
temp2
+
temp1
)
b1
=
-
2
*
A
*
((
A
-
1
)
+
temp3
)
b2
=
A
*
((
A
+
1
)
+
temp2
-
temp1
)
a0
=
(
A
+
1
)
-
temp2
+
temp1
a1
=
2
*
((
A
-
1
)
-
temp3
)
a2
=
(
A
+
1
)
-
temp2
-
temp1
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
bass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
gain
:
float
,
central_freq
:
float
=
100
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design a bass tone-control effect. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
gain (float): desired gain at the boost (or attenuation) in dB.
central_freq (float, optional): central frequency (in Hz). (Default: ``100``)
Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``).
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
alpha
=
math
.
sin
(
w0
)
/
2
/
Q
A
=
math
.
exp
(
gain
/
40
*
math
.
log
(
10
))
temp1
=
2
*
math
.
sqrt
(
A
)
*
alpha
temp2
=
(
A
-
1
)
*
math
.
cos
(
w0
)
temp3
=
(
A
+
1
)
*
math
.
cos
(
w0
)
b0
=
A
*
((
A
+
1
)
-
temp2
+
temp1
)
b1
=
2
*
A
*
((
A
-
1
)
-
temp3
)
b2
=
A
*
((
A
+
1
)
-
temp2
-
temp1
)
a0
=
(
A
+
1
)
+
temp2
+
temp1
a1
=
-
2
*
((
A
-
1
)
+
temp3
)
a2
=
(
A
+
1
)
+
temp2
-
temp1
return
biquad
(
waveform
,
b0
/
a0
,
b1
/
a0
,
b2
/
a0
,
a0
/
a0
,
a1
/
a0
,
a2
/
a0
)
def
deemph_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
)
->
Tensor
:
r
"""Apply ISO 908 CD de-emphasis (shelving) IIR filter. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, Allowed sample rate ``44100`` or ``48000``
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
if
sample_rate
==
44100
:
central_freq
=
5283
width_slope
=
0.4845
gain
=
-
9.477
elif
sample_rate
==
48000
:
central_freq
=
5356
width_slope
=
0.479
gain
=
-
9.62
else
:
raise
ValueError
(
"Sample rate must be 44100 (audio-CD) or 48000 (DAT)"
)
w0
=
2
*
math
.
pi
*
central_freq
/
sample_rate
A
=
math
.
exp
(
gain
/
40.0
*
math
.
log
(
10
))
alpha
=
math
.
sin
(
w0
)
/
2
*
math
.
sqrt
((
A
+
1
/
A
)
*
(
1
/
width_slope
-
1
)
+
2
)
temp1
=
2
*
math
.
sqrt
(
A
)
*
alpha
temp2
=
(
A
-
1
)
*
math
.
cos
(
w0
)
temp3
=
(
A
+
1
)
*
math
.
cos
(
w0
)
b0
=
A
*
((
A
+
1
)
+
temp2
+
temp1
)
b1
=
-
2
*
A
*
((
A
-
1
)
+
temp3
)
b2
=
A
*
((
A
+
1
)
+
temp2
-
temp1
)
a0
=
(
A
+
1
)
-
temp2
+
temp1
a1
=
2
*
((
A
-
1
)
-
temp3
)
a2
=
(
A
+
1
)
-
temp2
-
temp1
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
riaa_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
)
->
Tensor
:
r
"""Apply RIAA vinyl playback equalisation. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz).
Allowed sample rates in Hz : ``44100``,``48000``,``88200``,``96000``
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
https://www.w3.org/2011/audio/audio-eq-cookbook.html#APF
"""
if
(
sample_rate
==
44100
):
zeros
=
[
-
0.2014898
,
0.9233820
]
poles
=
[
0.7083149
,
0.9924091
]
elif
(
sample_rate
==
48000
):
zeros
=
[
-
0.1766069
,
0.9321590
]
poles
=
[
0.7396325
,
0.9931330
]
elif
(
sample_rate
==
88200
):
zeros
=
[
-
0.1168735
,
0.9648312
]
poles
=
[
0.8590646
,
0.9964002
]
elif
(
sample_rate
==
96000
):
zeros
=
[
-
0.1141486
,
0.9676817
]
poles
=
[
0.8699137
,
0.9966946
]
else
:
raise
ValueError
(
"Sample rate must be 44.1k, 48k, 88.2k, or 96k"
)
# polynomial coefficients with roots zeros[0] and zeros[1]
b0
=
1.
b1
=
-
(
zeros
[
0
]
+
zeros
[
1
])
b2
=
(
zeros
[
0
]
*
zeros
[
1
])
# polynomial coefficients with roots poles[0] and poles[1]
a0
=
1.
a1
=
-
(
poles
[
0
]
+
poles
[
1
])
a2
=
(
poles
[
0
]
*
poles
[
1
])
# Normalise to 0dB at 1kHz
y
=
2
*
math
.
pi
*
1000
/
sample_rate
b_re
=
b0
+
b1
*
math
.
cos
(
-
y
)
+
b2
*
math
.
cos
(
-
2
*
y
)
a_re
=
a0
+
a1
*
math
.
cos
(
-
y
)
+
a2
*
math
.
cos
(
-
2
*
y
)
b_im
=
b1
*
math
.
sin
(
-
y
)
+
b2
*
math
.
sin
(
-
2
*
y
)
a_im
=
a1
*
math
.
sin
(
-
y
)
+
a2
*
math
.
sin
(
-
2
*
y
)
g
=
1
/
math
.
sqrt
((
b_re
**
2
+
b_im
**
2
)
/
(
a_re
**
2
+
a_im
**
2
))
b0
*=
g
b1
*=
g
b2
*=
g
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
contrast
(
waveform
:
Tensor
,
enhancement_amount
:
float
=
75.
)
->
Tensor
:
r
"""Apply contrast effect. Similar to SoX implementation.
Comparable with compression, this effect modifies an audio signal to make it sound louder
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
enhancement_amount (float): controls the amount of the enhancement
Allowed range of values for enhancement_amount : 0-100
Note that enhancement_amount = 0 still gives a significant contrast enhancement
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
"""
if
not
0
<=
enhancement_amount
<=
100
:
raise
ValueError
(
"Allowed range of values for enhancement_amount : 0-100"
)
contrast
=
enhancement_amount
/
750.
temp1
=
waveform
*
(
math
.
pi
/
2
)
temp2
=
contrast
*
torch
.
sin
(
temp1
*
4
)
output_waveform
=
torch
.
sin
(
temp1
+
temp2
)
return
output_waveform
def
dcshift
(
waveform
:
Tensor
,
shift
:
float
,
limiter_gain
:
Optional
[
float
]
=
None
)
->
Tensor
:
r
"""Apply a DC shift to the audio. Similar to SoX implementation.
This can be useful to remove a DC offset
(caused perhaps by a hardware problem in the recording chain) from the audio
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
shift (float): indicates the amount to shift the audio
Allowed range of values for shift : -2.0 to +2.0
limiter_gain (float): It is used only on peaks to prevent clipping
It should have a value much less than 1 (e.g. 0.05 or 0.02)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
"""
output_waveform
=
waveform
limiter_threshold
=
0.
if
limiter_gain
is
not
None
:
limiter_threshold
=
1.0
-
(
abs
(
shift
)
-
limiter_gain
)
if
limiter_gain
is
not
None
and
shift
>
0
:
mask
=
waveform
>
limiter_threshold
temp
=
(
waveform
[
mask
]
-
limiter_threshold
)
*
limiter_gain
/
(
1
-
limiter_threshold
)
output_waveform
[
mask
]
=
(
temp
+
limiter_threshold
+
shift
).
clamp
(
max
=
limiter_threshold
)
output_waveform
[
~
mask
]
=
(
waveform
[
~
mask
]
+
shift
).
clamp
(
min
=-
1
,
max
=
1
)
elif
limiter_gain
is
not
None
and
shift
<
0
:
mask
=
waveform
<
-
limiter_threshold
temp
=
(
waveform
[
mask
]
+
limiter_threshold
)
*
limiter_gain
/
(
1
-
limiter_threshold
)
output_waveform
[
mask
]
=
(
temp
-
limiter_threshold
+
shift
).
clamp
(
min
=-
limiter_threshold
)
output_waveform
[
~
mask
]
=
(
waveform
[
~
mask
]
+
shift
).
clamp
(
min
=-
1
,
max
=
1
)
else
:
output_waveform
=
(
waveform
+
shift
).
clamp
(
min
=-
1
,
max
=
1
)
return
output_waveform
def
overdrive
(
waveform
:
Tensor
,
gain
:
float
=
20
,
colour
:
float
=
20
)
->
Tensor
:
r
"""Apply a overdrive effect to the audio. Similar to SoX implementation.
This effect applies a non linear distortion to the audio signal.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
gain (float): desired gain at the boost (or attenuation) in dB
Allowed range of values are 0 to 100
colour (float): controls the amount of even harmonic content in the over-driven output
Allowed range of values are 0 to 100
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
"""
actual_shape
=
waveform
.
shape
device
,
dtype
=
waveform
.
device
,
waveform
.
dtype
# convert to 2D (..,time)
waveform
=
waveform
.
view
(
-
1
,
actual_shape
[
-
1
])
gain
=
_dB2Linear
(
gain
)
colour
=
colour
/
200
last_in
=
torch
.
zeros
(
waveform
.
shape
[:
-
1
],
dtype
=
dtype
,
device
=
device
)
last_out
=
torch
.
zeros
(
waveform
.
shape
[:
-
1
],
dtype
=
dtype
,
device
=
device
)
temp
=
waveform
*
gain
+
colour
mask1
=
temp
<
-
1
temp
[
mask1
]
=
torch
.
tensor
(
-
2.0
/
3.0
,
dtype
=
dtype
,
device
=
device
)
# Wrapping the constant with Tensor is required for Torchscript
mask2
=
temp
>
1
temp
[
mask2
]
=
torch
.
tensor
(
2.0
/
3.0
,
dtype
=
dtype
,
device
=
device
)
mask3
=
(
~
mask1
&
~
mask2
)
temp
[
mask3
]
=
temp
[
mask3
]
-
(
temp
[
mask3
]
**
3
)
*
(
1.
/
3
)
output_waveform
=
torch
.
zeros_like
(
waveform
,
dtype
=
dtype
,
device
=
device
)
# TODO: Implement a torch CPP extension
for
i
in
range
(
waveform
.
shape
[
-
1
]):
last_out
=
temp
[:,
i
]
-
last_in
+
0.995
*
last_out
last_in
=
temp
[:,
i
]
output_waveform
[:,
i
]
=
waveform
[:,
i
]
*
0.5
+
last_out
*
0.75
return
output_waveform
.
clamp
(
min
=-
1
,
max
=
1
).
view
(
actual_shape
)
def
phaser
(
waveform
:
Tensor
,
sample_rate
:
int
,
gain_in
:
float
=
0.4
,
gain_out
:
float
=
0.74
,
delay_ms
:
float
=
3.0
,
decay
:
float
=
0.4
,
mod_speed
:
float
=
0.5
,
sinusoidal
:
bool
=
True
)
->
Tensor
:
r
"""Apply a phasing effect to the audio. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
gain_in (float): desired input gain at the boost (or attenuation) in dB
Allowed range of values are 0 to 1
gain_out (float): desired output gain at the boost (or attenuation) in dB
Allowed range of values are 0 to 1e9
delay_ms (float): desired delay in milli seconds
Allowed range of values are 0 to 5.0
decay (float): desired decay relative to gain-in
Allowed range of values are 0 to 0.99
mod_speed (float): modulation speed in Hz
Allowed range of values are 0.1 to 2
sinusoidal (bool): If ``True``, uses sinusoidal modulation (preferable for multiple instruments)
If ``False``, uses triangular modulation (gives single instruments a sharper phasing effect)
(Default: ``True``)
Returns:
Tensor: Waveform of dimension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
Scott Lehman, Effects Explained, http://harmony-central.com/Effects/effects-explained.html
"""
actual_shape
=
waveform
.
shape
device
,
dtype
=
waveform
.
device
,
waveform
.
dtype
# convert to 2D (channels,time)
waveform
=
waveform
.
view
(
-
1
,
actual_shape
[
-
1
])
delay_buf_len
=
int
((
delay_ms
*
.
001
*
sample_rate
)
+
.
5
)
delay_buf
=
torch
.
zeros
(
waveform
.
shape
[
0
],
delay_buf_len
,
dtype
=
dtype
,
device
=
device
)
mod_buf_len
=
int
(
sample_rate
/
mod_speed
+
.
5
)
if
sinusoidal
:
wave_type
=
'SINE'
else
:
wave_type
=
'TRIANGLE'
mod_buf
=
_generate_wave_table
(
wave_type
=
wave_type
,
data_type
=
'INT'
,
table_size
=
mod_buf_len
,
min
=
1.
,
max
=
float
(
delay_buf_len
),
phase
=
math
.
pi
/
2
,
device
=
device
)
delay_pos
=
0
mod_pos
=
0
output_waveform_pre_gain_list
=
[]
waveform
=
waveform
*
gain_in
delay_buf
=
delay_buf
*
decay
waveform_list
=
[
waveform
[:,
i
]
for
i
in
range
(
waveform
.
size
(
1
))]
delay_buf_list
=
[
delay_buf
[:,
i
]
for
i
in
range
(
delay_buf
.
size
(
1
))]
mod_buf_list
=
[
mod_buf
[
i
]
for
i
in
range
(
mod_buf
.
size
(
0
))]
for
i
in
range
(
waveform
.
shape
[
-
1
]):
idx
=
int
((
delay_pos
+
mod_buf_list
[
mod_pos
])
%
delay_buf_len
)
mod_pos
=
(
mod_pos
+
1
)
%
mod_buf_len
delay_pos
=
(
delay_pos
+
1
)
%
delay_buf_len
temp
=
(
waveform_list
[
i
])
+
(
delay_buf_list
[
idx
])
delay_buf_list
[
delay_pos
]
=
temp
*
decay
output_waveform_pre_gain_list
.
append
(
temp
)
output_waveform
=
torch
.
stack
(
output_waveform_pre_gain_list
,
dim
=
1
).
to
(
dtype
=
dtype
,
device
=
device
)
output_waveform
.
mul_
(
gain_out
)
return
output_waveform
.
clamp
(
min
=-
1
,
max
=
1
).
view
(
actual_shape
)
def
_generate_wave_table
(
wave_type
:
str
,
data_type
:
str
,
table_size
:
int
,
min
:
float
,
max
:
float
,
phase
:
float
,
device
:
torch
.
device
)
->
Tensor
:
r
"""A helper fucntion for phaser. Generates a table with given parameters
Args:
wave_type (str): SINE or TRIANGULAR
data_type (str): desired data_type ( `INT` or `FLOAT` )
table_size (int): desired table size
min (float): desired min value
max (float): desired max value
phase (float): desired phase
device (torch.device): Torch device on which table must be generated
Returns:
Tensor: A 1D tensor with wave table values
"""
phase_offset
=
int
(
phase
/
math
.
pi
/
2
*
table_size
+
0.5
)
t
=
torch
.
arange
(
table_size
,
device
=
device
,
dtype
=
torch
.
int32
)
point
=
(
t
+
phase_offset
)
%
table_size
d
=
torch
.
zeros_like
(
point
,
device
=
device
,
dtype
=
torch
.
float64
)
if
wave_type
==
'SINE'
:
d
=
(
torch
.
sin
(
point
.
to
(
torch
.
float64
)
/
table_size
*
2
*
math
.
pi
)
+
1
)
/
2
elif
wave_type
==
'TRIANGLE'
:
d
=
point
.
to
(
torch
.
float64
)
*
2
/
table_size
value
=
4
*
point
//
table_size
d
[
value
==
0
]
=
d
[
value
==
0
]
+
0.5
d
[
value
==
1
]
=
1.5
-
d
[
value
==
1
]
d
[
value
==
2
]
=
1.5
-
d
[
value
==
2
]
d
[
value
==
3
]
=
d
[
value
==
3
]
-
1.5
d
=
d
*
(
max
-
min
)
+
min
if
data_type
==
'INT'
:
mask
=
d
<
0
d
[
mask
]
=
d
[
mask
]
-
0.5
d
[
~
mask
]
=
d
[
~
mask
]
+
0.5
d
=
d
.
to
(
torch
.
int32
)
elif
data_type
==
'FLOAT'
:
d
=
d
.
to
(
torch
.
float32
)
return
d
def
flanger
(
waveform
:
Tensor
,
sample_rate
:
int
,
delay
:
float
=
0.
,
depth
:
float
=
2.
,
regen
:
float
=
0.
,
width
:
float
=
71.
,
speed
:
float
=
0.5
,
phase
:
float
=
25.
,
modulation
:
str
=
'sinusoidal'
,
interpolation
:
str
=
'linear'
)
->
Tensor
:
r
"""Apply a flanger effect to the audio. Similar to SoX implementation.
Args:
waveform (Tensor): audio waveform of dimension of `(..., channel, time)` .
Max 4 channels allowed
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
delay (float): desired delay in milliseconds(ms)
Allowed range of values are 0 to 30
depth (float): desired delay depth in milliseconds(ms)
Allowed range of values are 0 to 10
regen (float): desired regen(feeback gain) in dB
Allowed range of values are -95 to 95
width (float): desired width(delay gain) in dB
Allowed range of values are 0 to 100
speed (float): modulation speed in Hz
Allowed range of values are 0.1 to 10
phase (float): percentage phase-shift for multi-channel
Allowed range of values are 0 to 100
modulation (str): Use either "sinusoidal" or "triangular" modulation. (Default: ``sinusoidal``)
interpolation (str): Use either "linear" or "quadratic" for delay-line interpolation. (Default: ``linear``)
Returns:
Tensor: Waveform of dimension of `(..., channel, time)`
References:
http://sox.sourceforge.net/sox.html
Scott Lehman, Effects Explained,
https://web.archive.org/web/20051125072557/http://www.harmony-central.com/Effects/effects-explained.html
"""
if
modulation
not
in
(
'sinusoidal'
,
'triangular'
):
raise
ValueError
(
"Only 'sinusoidal' or 'triangular' modulation allowed"
)
if
interpolation
not
in
(
'linear'
,
'quadratic'
):
raise
ValueError
(
"Only 'linear' or 'quadratic' interpolation allowed"
)
actual_shape
=
waveform
.
shape
device
,
dtype
=
waveform
.
device
,
waveform
.
dtype
if
actual_shape
[
-
2
]
>
4
:
raise
ValueError
(
"Max 4 channels allowed"
)
# convert to 3D (batch, channels, time)
waveform
=
waveform
.
view
(
-
1
,
actual_shape
[
-
2
],
actual_shape
[
-
1
])
# Scaling
feedback_gain
=
regen
/
100
delay_gain
=
width
/
100
channel_phase
=
phase
/
100
delay_min
=
delay
/
1000
delay_depth
=
depth
/
1000
n_channels
=
waveform
.
shape
[
-
2
]
if
modulation
==
'sinusoidal'
:
wave_type
=
'SINE'
else
:
wave_type
=
'TRIANGLE'
# Balance output:
in_gain
=
1.
/
(
1
+
delay_gain
)
delay_gain
=
delay_gain
/
(
1
+
delay_gain
)
# Balance feedback loop:
delay_gain
=
delay_gain
*
(
1
-
abs
(
feedback_gain
))
delay_buf_length
=
int
((
delay_min
+
delay_depth
)
*
sample_rate
+
0.5
)
delay_buf_length
=
delay_buf_length
+
2
delay_bufs
=
torch
.
zeros
(
waveform
.
shape
[
0
],
n_channels
,
delay_buf_length
,
dtype
=
dtype
,
device
=
device
)
delay_last
=
torch
.
zeros
(
waveform
.
shape
[
0
],
n_channels
,
dtype
=
dtype
,
device
=
device
)
lfo_length
=
int
(
sample_rate
/
speed
)
table_min
=
math
.
floor
(
delay_min
*
sample_rate
+
0.5
)
table_max
=
delay_buf_length
-
2.
lfo
=
_generate_wave_table
(
wave_type
=
wave_type
,
data_type
=
'FLOAT'
,
table_size
=
lfo_length
,
min
=
float
(
table_min
),
max
=
float
(
table_max
),
phase
=
3
*
math
.
pi
/
2
,
device
=
device
)
output_waveform
=
torch
.
zeros_like
(
waveform
,
dtype
=
dtype
,
device
=
device
)
delay_buf_pos
=
0
lfo_pos
=
0
channel_idxs
=
torch
.
arange
(
0
,
n_channels
,
device
=
device
)
for
i
in
range
(
waveform
.
shape
[
-
1
]):
delay_buf_pos
=
(
delay_buf_pos
+
delay_buf_length
-
1
)
%
delay_buf_length
cur_channel_phase
=
(
channel_idxs
*
lfo_length
*
channel_phase
+
.
5
).
to
(
torch
.
int64
)
delay_tensor
=
lfo
[(
lfo_pos
+
cur_channel_phase
)
%
lfo_length
]
frac_delay
=
torch
.
frac
(
delay_tensor
)
delay_tensor
=
torch
.
floor
(
delay_tensor
)
int_delay
=
delay_tensor
.
to
(
torch
.
int64
)
temp
=
waveform
[:,
:,
i
]
delay_bufs
[:,
:,
delay_buf_pos
]
=
temp
+
delay_last
*
feedback_gain
delayed_0
=
delay_bufs
[:,
channel_idxs
,
(
delay_buf_pos
+
int_delay
)
%
delay_buf_length
]
int_delay
=
int_delay
+
1
delayed_1
=
delay_bufs
[:,
channel_idxs
,
(
delay_buf_pos
+
int_delay
)
%
delay_buf_length
]
int_delay
=
int_delay
+
1
if
interpolation
==
'linear'
:
delayed
=
delayed_0
+
(
delayed_1
-
delayed_0
)
*
frac_delay
else
:
delayed_2
=
delay_bufs
[:,
channel_idxs
,
(
delay_buf_pos
+
int_delay
)
%
delay_buf_length
]
int_delay
=
int_delay
+
1
delayed_2
=
delayed_2
-
delayed_0
delayed_1
=
delayed_1
-
delayed_0
a
=
delayed_2
*
.
5
-
delayed_1
b
=
delayed_1
*
2
-
delayed_2
*
.
5
delayed
=
delayed_0
+
(
a
*
frac_delay
+
b
)
*
frac_delay
delay_last
=
delayed
output_waveform
[:,
:,
i
]
=
waveform
[:,
:,
i
]
*
in_gain
+
delayed
*
delay_gain
lfo_pos
=
(
lfo_pos
+
1
)
%
lfo_length
return
output_waveform
.
clamp
(
min
=-
1
,
max
=
1
).
view
(
actual_shape
)
def
mask_along_axis_iid
(
specgrams
:
Tensor
,
mask_param
:
int
,
...
...
@@ -1638,156 +658,6 @@ def compute_deltas(
return
output
def
gain
(
waveform
:
Tensor
,
gain_db
:
float
=
1.0
)
->
Tensor
:
r
"""Apply amplification or attenuation to the whole waveform.
Args:
waveform (Tensor): Tensor of audio of dimension (..., time).
gain_db (float, optional) Gain adjustment in decibels (dB) (Default: ``1.0``).
Returns:
Tensor: the whole waveform amplified by gain_db.
"""
if
(
gain_db
==
0
):
return
waveform
ratio
=
10
**
(
gain_db
/
20
)
return
waveform
*
ratio
def
_add_noise_shaping
(
dithered_waveform
:
Tensor
,
waveform
:
Tensor
)
->
Tensor
:
r
"""Noise shaping is calculated by error:
error[n] = dithered[n] - original[n]
noise_shaped_waveform[n] = dithered[n] + error[n-1]
"""
wf_shape
=
waveform
.
size
()
waveform
=
waveform
.
reshape
(
-
1
,
wf_shape
[
-
1
])
dithered_shape
=
dithered_waveform
.
size
()
dithered_waveform
=
dithered_waveform
.
reshape
(
-
1
,
dithered_shape
[
-
1
])
error
=
dithered_waveform
-
waveform
# add error[n-1] to dithered_waveform[n], so offset the error by 1 index
zeros
=
torch
.
zeros
(
1
,
dtype
=
error
.
dtype
,
device
=
error
.
device
)
for
index
in
range
(
error
.
size
()[
0
]):
err
=
error
[
index
]
error_offset
=
torch
.
cat
((
zeros
,
err
))
error
[
index
]
=
error_offset
[:
waveform
.
size
()[
1
]]
noise_shaped
=
dithered_waveform
+
error
return
noise_shaped
.
reshape
(
dithered_shape
[:
-
1
]
+
noise_shaped
.
shape
[
-
1
:])
def
_apply_probability_distribution
(
waveform
:
Tensor
,
density_function
:
str
=
"TPDF"
)
->
Tensor
:
r
"""Apply a probability distribution function on a waveform.
Triangular probability density function (TPDF) dither noise has a
triangular distribution; values in the center of the range have a higher
probability of occurring.
Rectangular probability density function (RPDF) dither noise has a
uniform distribution; any value in the specified range has the same
probability of occurring.
Gaussian probability density function (GPDF) has a normal distribution.
The relationship of probabilities of results follows a bell-shaped,
or Gaussian curve, typical of dither generated by analog sources.
Args:
waveform (Tensor): Tensor of audio of dimension (..., time)
probability_density_function (str, optional): The density function of a
continuous random variable (Default: ``"TPDF"``)
Options: Triangular Probability Density Function - `TPDF`
Rectangular Probability Density Function - `RPDF`
Gaussian Probability Density Function - `GPDF`
Returns:
Tensor: waveform dithered with TPDF
"""
# pack batch
shape
=
waveform
.
size
()
waveform
=
waveform
.
reshape
(
-
1
,
shape
[
-
1
])
channel_size
=
waveform
.
size
()[
0
]
-
1
time_size
=
waveform
.
size
()[
-
1
]
-
1
random_channel
=
int
(
torch
.
randint
(
channel_size
,
[
1
,
]).
item
())
if
channel_size
>
0
else
0
random_time
=
int
(
torch
.
randint
(
time_size
,
[
1
,
]).
item
())
if
time_size
>
0
else
0
number_of_bits
=
16
up_scaling
=
2
**
(
number_of_bits
-
1
)
-
2
signal_scaled
=
waveform
*
up_scaling
down_scaling
=
2
**
(
number_of_bits
-
1
)
signal_scaled_dis
=
waveform
if
(
density_function
==
"RPDF"
):
RPDF
=
waveform
[
random_channel
][
random_time
]
-
0.5
signal_scaled_dis
=
signal_scaled
+
RPDF
elif
(
density_function
==
"GPDF"
):
# TODO Replace by distribution code once
# https://github.com/pytorch/pytorch/issues/29843 is resolved
# gaussian = torch.distributions.normal.Normal(torch.mean(waveform, -1), 1).sample()
num_rand_variables
=
6
gaussian
=
waveform
[
random_channel
][
random_time
]
for
ws
in
num_rand_variables
*
[
time_size
]:
rand_chan
=
int
(
torch
.
randint
(
channel_size
,
[
1
,
]).
item
())
gaussian
+=
waveform
[
rand_chan
][
int
(
torch
.
randint
(
ws
,
[
1
,
]).
item
())]
signal_scaled_dis
=
signal_scaled
+
gaussian
else
:
# dtype needed for https://github.com/pytorch/pytorch/issues/32358
TPDF
=
torch
.
bartlett_window
(
time_size
+
1
,
dtype
=
signal_scaled
.
dtype
,
device
=
signal_scaled
.
device
)
TPDF
=
TPDF
.
repeat
((
channel_size
+
1
),
1
)
signal_scaled_dis
=
signal_scaled
+
TPDF
quantised_signal_scaled
=
torch
.
round
(
signal_scaled_dis
)
quantised_signal
=
quantised_signal_scaled
/
down_scaling
# unpack batch
return
quantised_signal
.
reshape
(
shape
[:
-
1
]
+
quantised_signal
.
shape
[
-
1
:])
def
dither
(
waveform
:
Tensor
,
density_function
:
str
=
"TPDF"
,
noise_shaping
:
bool
=
False
)
->
Tensor
:
r
"""Dither increases the perceived dynamic range of audio stored at a
particular bit-depth by eliminating nonlinear truncation distortion
(i.e. adding minimally perceived noise to mask distortion caused by quantization).
Args:
waveform (Tensor): Tensor of audio of dimension (..., time)
density_function (str, optional): The density function of a continuous random variable (Default: ``"TPDF"``)
Options: Triangular Probability Density Function - `TPDF`
Rectangular Probability Density Function - `RPDF`
Gaussian Probability Density Function - `GPDF`
noise_shaping (bool, optional): a filtering process that shapes the spectral
energy of quantisation error (Default: ``False``)
Returns:
Tensor: waveform dithered
"""
dithered
=
_apply_probability_distribution
(
waveform
,
density_function
=
density_function
)
if
noise_shaping
:
return
_add_noise_shaping
(
dithered
,
waveform
)
else
:
return
dithered
def
_compute_nccf
(
waveform
:
Tensor
,
sample_rate
:
int
,
...
...
@@ -2040,296 +910,3 @@ def sliding_window_cmn(
if
len
(
input_shape
)
==
2
:
cmn_waveform
=
cmn_waveform
.
squeeze
(
0
)
return
cmn_waveform
def
_measure
(
measure_len_ws
:
int
,
samples
:
Tensor
,
spectrum
:
Tensor
,
noise_spectrum
:
Tensor
,
spectrum_window
:
Tensor
,
spectrum_start
:
int
,
spectrum_end
:
int
,
cepstrum_window
:
Tensor
,
cepstrum_start
:
int
,
cepstrum_end
:
int
,
noise_reduction_amount
:
float
,
measure_smooth_time_mult
:
float
,
noise_up_time_mult
:
float
,
noise_down_time_mult
:
float
,
index_ns
:
int
,
boot_count
:
int
)
->
float
:
assert
spectrum
.
size
()[
-
1
]
==
noise_spectrum
.
size
()[
-
1
]
samplesLen_ns
=
samples
.
size
()[
-
1
]
dft_len_ws
=
spectrum
.
size
()[
-
1
]
dftBuf
=
torch
.
zeros
(
dft_len_ws
)
_index_ns
=
torch
.
tensor
([
index_ns
]
+
[
(
index_ns
+
i
)
%
samplesLen_ns
for
i
in
range
(
1
,
measure_len_ws
)
])
dftBuf
[:
measure_len_ws
]
=
\
samples
[
_index_ns
]
*
spectrum_window
[:
measure_len_ws
]
# memset(c->dftBuf + i, 0, (p->dft_len_ws - i) * sizeof(*c->dftBuf));
dftBuf
[
measure_len_ws
:
dft_len_ws
].
zero_
()
# lsx_safe_rdft((int)p->dft_len_ws, 1, c->dftBuf);
_dftBuf
=
torchaudio
.
_internal
.
fft
.
rfft
(
dftBuf
)
# memset(c->dftBuf, 0, p->spectrum_start * sizeof(*c->dftBuf));
_dftBuf
[:
spectrum_start
].
zero_
()
mult
:
float
=
boot_count
/
(
1.
+
boot_count
)
\
if
boot_count
>=
0
\
else
measure_smooth_time_mult
_d
=
_dftBuf
[
spectrum_start
:
spectrum_end
].
abs
()
spectrum
[
spectrum_start
:
spectrum_end
].
mul_
(
mult
).
add_
(
_d
*
(
1
-
mult
))
_d
=
spectrum
[
spectrum_start
:
spectrum_end
]
**
2
_zeros
=
torch
.
zeros
(
spectrum_end
-
spectrum_start
)
_mult
=
_zeros
\
if
boot_count
>=
0
\
else
torch
.
where
(
_d
>
noise_spectrum
[
spectrum_start
:
spectrum_end
],
torch
.
tensor
(
noise_up_time_mult
),
# if
torch
.
tensor
(
noise_down_time_mult
)
# else
)
noise_spectrum
[
spectrum_start
:
spectrum_end
].
mul_
(
_mult
).
add_
(
_d
*
(
1
-
_mult
))
_d
=
torch
.
sqrt
(
torch
.
max
(
_zeros
,
_d
-
noise_reduction_amount
*
noise_spectrum
[
spectrum_start
:
spectrum_end
]))
_cepstrum_Buf
:
Tensor
=
torch
.
zeros
(
dft_len_ws
>>
1
)
_cepstrum_Buf
[
spectrum_start
:
spectrum_end
]
=
_d
*
cepstrum_window
_cepstrum_Buf
[
spectrum_end
:
dft_len_ws
>>
1
].
zero_
()
# lsx_safe_rdft((int)p->dft_len_ws >> 1, 1, c->dftBuf);
_cepstrum_Buf
=
torchaudio
.
_internal
.
fft
.
rfft
(
_cepstrum_Buf
)
result
:
float
=
float
(
torch
.
sum
(
_cepstrum_Buf
[
cepstrum_start
:
cepstrum_end
].
abs
().
pow
(
2
)))
result
=
\
math
.
log
(
result
/
(
cepstrum_end
-
cepstrum_start
))
\
if
result
>
0
\
else
-
math
.
inf
return
max
(
0
,
21
+
result
)
def
vad
(
waveform
:
Tensor
,
sample_rate
:
int
,
trigger_level
:
float
=
7.0
,
trigger_time
:
float
=
0.25
,
search_time
:
float
=
1.0
,
allowed_gap
:
float
=
0.25
,
pre_trigger_time
:
float
=
0.0
,
# Fine-tuning parameters
boot_time
:
float
=
.
35
,
noise_up_time
:
float
=
.
1
,
noise_down_time
:
float
=
.
01
,
noise_reduction_amount
:
float
=
1.35
,
measure_freq
:
float
=
20.0
,
measure_duration
:
Optional
[
float
]
=
None
,
measure_smooth_time
:
float
=
.
4
,
hp_filter_freq
:
float
=
50.
,
lp_filter_freq
:
float
=
6000.
,
hp_lifter_freq
:
float
=
150.
,
lp_lifter_freq
:
float
=
2000.
,
)
->
Tensor
:
r
"""Voice Activity Detector. Similar to SoX implementation.
Attempts to trim silence and quiet background sounds from the ends of recordings of speech.
The algorithm currently uses a simple cepstral power measurement to detect voice,
so may be fooled by other things, especially music.
The effect can trim only from the front of the audio,
so in order to trim from the back, the reverse effect must also be used.
Args:
waveform (Tensor): Tensor of audio of dimension `(..., time)`
sample_rate (int): Sample rate of audio signal.
trigger_level (float, optional): The measurement level used to trigger activity detection.
This may need to be cahnged depending on the noise level, signal level,
and other characteristics of the input audio. (Default: 7.0)
trigger_time (float, optional): The time constant (in seconds)
used to help ignore short bursts of sound. (Default: 0.25)
search_time (float, optional): The amount of audio (in seconds)
to search for quieter/shorter bursts of audio to include prior
to the detected trigger point. (Default: 1.0)
allowed_gap (float, optional): The allowed gap (in seconds) between
quiteter/shorter bursts of audio to include prior
to the detected trigger point. (Default: 0.25)
pre_trigger_time (float, optional): The amount of audio (in seconds) to preserve
before the trigger point and any found quieter/shorter bursts. (Default: 0.0)
boot_time (float, optional) The algorithm (internally) uses adaptive noise
estimation/reduction in order to detect the start of the wanted audio.
This option sets the time for the initial noise estimate. (Default: 0.35)
noise_up_time (float, optional) Time constant used by the adaptive noise estimator
for when the noise level is increasing. (Default: 0.1)
noise_down_time (float, optional) Time constant used by the adaptive noise estimator
for when the noise level is decreasing. (Default: 0.01)
noise_reduction_amount (float, optional) Amount of noise reduction to use in
the detection algorithm (e.g. 0, 0.5, ...). (Default: 1.35)
measure_freq (float, optional) Frequency of the algorithm’s
processing/measurements. (Default: 20.0)
measure_duration: (float, optional) Measurement duration.
(Default: Twice the measurement period; i.e. with overlap.)
measure_smooth_time (float, optional) Time constant used to smooth
spectral measurements. (Default: 0.4)
hp_filter_freq (float, optional) "Brick-wall" frequency of high-pass filter applied
at the input to the detector algorithm. (Default: 50.0)
lp_filter_freq (float, optional) "Brick-wall" frequency of low-pass filter applied
at the input to the detector algorithm. (Default: 6000.0)
hp_lifter_freq (float, optional) "Brick-wall" frequency of high-pass lifter used
in the detector algorithm. (Default: 150.0)
lp_lifter_freq (float, optional) "Brick-wall" frequency of low-pass lifter used
in the detector algorithm. (Default: 2000.0)
Returns:
Tensor: Tensor of audio of dimension (..., time).
References:
http://sox.sourceforge.net/sox.html
"""
measure_duration
:
float
=
2.0
/
measure_freq
\
if
measure_duration
is
None
\
else
measure_duration
measure_len_ws
=
int
(
sample_rate
*
measure_duration
+
.
5
)
measure_len_ns
=
measure_len_ws
# for (dft_len_ws = 16; dft_len_ws < measure_len_ws; dft_len_ws <<= 1);
dft_len_ws
=
16
while
(
dft_len_ws
<
measure_len_ws
):
dft_len_ws
*=
2
measure_period_ns
=
int
(
sample_rate
/
measure_freq
+
.
5
)
measures_len
=
math
.
ceil
(
search_time
*
measure_freq
)
search_pre_trigger_len_ns
=
measures_len
*
measure_period_ns
gap_len
=
int
(
allowed_gap
*
measure_freq
+
.
5
)
fixed_pre_trigger_len_ns
=
int
(
pre_trigger_time
*
sample_rate
+
.
5
)
samplesLen_ns
=
fixed_pre_trigger_len_ns
+
search_pre_trigger_len_ns
+
measure_len_ns
spectrum_window
=
torch
.
zeros
(
measure_len_ws
)
for
i
in
range
(
measure_len_ws
):
# sox.h:741 define SOX_SAMPLE_MIN (sox_sample_t)SOX_INT_MIN(32)
spectrum_window
[
i
]
=
2.
/
math
.
sqrt
(
float
(
measure_len_ws
))
# lsx_apply_hann(spectrum_window, (int)measure_len_ws);
spectrum_window
*=
torch
.
hann_window
(
measure_len_ws
,
dtype
=
torch
.
float
)
spectrum_start
:
int
=
int
(
hp_filter_freq
/
sample_rate
*
dft_len_ws
+
.
5
)
spectrum_start
:
int
=
max
(
spectrum_start
,
1
)
spectrum_end
:
int
=
int
(
lp_filter_freq
/
sample_rate
*
dft_len_ws
+
.
5
)
spectrum_end
:
int
=
min
(
spectrum_end
,
dft_len_ws
//
2
)
cepstrum_window
=
torch
.
zeros
(
spectrum_end
-
spectrum_start
)
for
i
in
range
(
spectrum_end
-
spectrum_start
):
cepstrum_window
[
i
]
=
2.
/
math
.
sqrt
(
float
(
spectrum_end
)
-
spectrum_start
)
# lsx_apply_hann(cepstrum_window,(int)(spectrum_end - spectrum_start));
cepstrum_window
*=
torch
.
hann_window
(
spectrum_end
-
spectrum_start
,
dtype
=
torch
.
float
)
cepstrum_start
=
math
.
ceil
(
sample_rate
*
.
5
/
lp_lifter_freq
)
cepstrum_end
=
math
.
floor
(
sample_rate
*
.
5
/
hp_lifter_freq
)
cepstrum_end
=
min
(
cepstrum_end
,
dft_len_ws
//
4
)
assert
cepstrum_end
>
cepstrum_start
noise_up_time_mult
=
math
.
exp
(
-
1.
/
(
noise_up_time
*
measure_freq
))
noise_down_time_mult
=
math
.
exp
(
-
1.
/
(
noise_down_time
*
measure_freq
))
measure_smooth_time_mult
=
math
.
exp
(
-
1.
/
(
measure_smooth_time
*
measure_freq
))
trigger_meas_time_mult
=
math
.
exp
(
-
1.
/
(
trigger_time
*
measure_freq
))
boot_count_max
=
int
(
boot_time
*
measure_freq
-
.
5
)
measure_timer_ns
=
measure_len_ns
boot_count
=
measures_index
=
flushedLen_ns
=
samplesIndex_ns
=
0
# pack batch
shape
=
waveform
.
size
()
waveform
=
waveform
.
view
(
-
1
,
shape
[
-
1
])
n_channels
,
ilen
=
waveform
.
size
()
mean_meas
=
torch
.
zeros
(
n_channels
)
samples
=
torch
.
zeros
(
n_channels
,
samplesLen_ns
)
spectrum
=
torch
.
zeros
(
n_channels
,
dft_len_ws
)
noise_spectrum
=
torch
.
zeros
(
n_channels
,
dft_len_ws
)
measures
=
torch
.
zeros
(
n_channels
,
measures_len
)
has_triggered
:
bool
=
False
num_measures_to_flush
:
int
=
0
pos
:
int
=
0
while
(
pos
<
ilen
and
not
has_triggered
):
measure_timer_ns
-=
1
for
i
in
range
(
n_channels
):
samples
[
i
,
samplesIndex_ns
]
=
waveform
[
i
,
pos
]
# if (!p->measure_timer_ns) {
if
(
measure_timer_ns
==
0
):
index_ns
:
int
=
\
(
samplesIndex_ns
+
samplesLen_ns
-
measure_len_ns
)
%
samplesLen_ns
meas
:
float
=
_measure
(
measure_len_ws
=
measure_len_ws
,
samples
=
samples
[
i
],
spectrum
=
spectrum
[
i
],
noise_spectrum
=
noise_spectrum
[
i
],
spectrum_window
=
spectrum_window
,
spectrum_start
=
spectrum_start
,
spectrum_end
=
spectrum_end
,
cepstrum_window
=
cepstrum_window
,
cepstrum_start
=
cepstrum_start
,
cepstrum_end
=
cepstrum_end
,
noise_reduction_amount
=
noise_reduction_amount
,
measure_smooth_time_mult
=
measure_smooth_time_mult
,
noise_up_time_mult
=
noise_up_time_mult
,
noise_down_time_mult
=
noise_down_time_mult
,
index_ns
=
index_ns
,
boot_count
=
boot_count
)
measures
[
i
,
measures_index
]
=
meas
mean_meas
[
i
]
=
mean_meas
[
i
]
*
trigger_meas_time_mult
+
meas
*
(
1.
-
trigger_meas_time_mult
)
has_triggered
=
has_triggered
or
(
mean_meas
[
i
]
>=
trigger_level
)
if
has_triggered
:
n
:
int
=
measures_len
k
:
int
=
measures_index
jTrigger
:
int
=
n
jZero
:
int
=
n
j
:
int
=
0
for
j
in
range
(
n
):
if
(
measures
[
i
,
k
]
>=
trigger_level
)
and
(
j
<=
jTrigger
+
gap_len
):
jZero
=
jTrigger
=
j
elif
(
measures
[
i
,
k
]
==
0
)
and
(
jTrigger
>=
jZero
):
jZero
=
j
k
=
(
k
+
n
-
1
)
%
n
j
=
min
(
j
,
jZero
)
# num_measures_to_flush = range_limit(j, num_measures_to_flush, n);
num_measures_to_flush
=
(
min
(
max
(
num_measures_to_flush
,
j
),
n
))
# end if has_triggered
# end if (measure_timer_ns == 0):
# end for
samplesIndex_ns
+=
1
pos
+=
1
# end while
if
samplesIndex_ns
==
samplesLen_ns
:
samplesIndex_ns
=
0
if
measure_timer_ns
==
0
:
measure_timer_ns
=
measure_period_ns
measures_index
+=
1
measures_index
=
measures_index
%
measures_len
if
boot_count
>=
0
:
boot_count
=
-
1
if
boot_count
==
boot_count_max
else
boot_count
+
1
if
has_triggered
:
flushedLen_ns
=
(
measures_len
-
num_measures_to_flush
)
*
measure_period_ns
samplesIndex_ns
=
(
samplesIndex_ns
+
flushedLen_ns
)
%
samplesLen_ns
res
=
waveform
[:,
pos
-
samplesLen_ns
+
flushedLen_ns
:]
# unpack batch
return
res
.
view
(
shape
[:
-
1
]
+
res
.
shape
[
-
1
:])
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment