Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
4c221140
Unverified
Commit
4c221140
authored
Mar 31, 2020
by
Tomás Osório
Committed by
GitHub
Mar 31, 2020
Browse files
Add inline typing to functional (#482)
* add typing to functional * fix minor things * fix flake8
parent
a72dd836
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
342 additions
and
232 deletions
+342
-232
torchaudio/functional.py
torchaudio/functional.py
+342
-232
No files found.
torchaudio/functional.py
View file @
4c221140
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
import
math
import
math
from
typing
import
Optional
,
Tuple
import
torch
import
torch
from
torch
import
Tensor
__all__
=
[
__all__
=
[
"istft"
,
"istft"
,
...
@@ -37,17 +39,16 @@ __all__ = [
...
@@ -37,17 +39,16 @@ __all__ = [
# TODO: remove this once https://github.com/pytorch/pytorch/issues/21478 gets solved
# TODO: remove this once https://github.com/pytorch/pytorch/issues/21478 gets solved
@
torch
.
jit
.
ignore
@
torch
.
jit
.
ignore
def
_stft
(
def
_stft
(
waveform
,
waveform
:
Tensor
,
n_fft
,
n_fft
:
int
,
hop_length
,
hop_length
:
Optional
[
int
],
win_length
,
win_length
:
Optional
[
int
],
window
,
window
:
Optional
[
Tensor
],
center
,
center
:
bool
,
pad_mode
,
pad_mode
:
str
,
normalized
,
normalized
:
bool
,
onesided
,
onesided
:
bool
):
)
->
Tensor
:
# type: (Tensor, int, Optional[int], Optional[int], Optional[Tensor], bool, str, bool, bool) -> Tensor
return
torch
.
stft
(
return
torch
.
stft
(
waveform
,
waveform
,
n_fft
,
n_fft
,
...
@@ -62,18 +63,17 @@ def _stft(
...
@@ -62,18 +63,17 @@ def _stft(
def
istft
(
def
istft
(
stft_matrix
,
# type: Tensor
stft_matrix
:
Tensor
,
n_fft
,
# type: int
n_fft
:
int
,
hop_length
=
None
,
# type: Optional[int]
hop_length
:
Optional
[
int
]
=
None
,
win_length
=
None
,
# type: Optional[int]
win_length
:
Optional
[
int
]
=
None
,
window
=
None
,
# type: Optional[Tensor]
window
:
Optional
[
Tensor
]
=
None
,
center
=
True
,
# type: bool
center
:
bool
=
True
,
pad_mode
=
"reflect"
,
# type: str
pad_mode
:
str
=
"reflect"
,
normalized
=
False
,
# type: bool
normalized
:
bool
=
False
,
onesided
=
True
,
# type: bool
onesided
:
bool
=
True
,
length
=
None
,
# type: Optional[int]
length
:
Optional
[
int
]
=
None
,
):
)
->
Tensor
:
# type: (...) -> Tensor
r
"""Inverse short time Fourier Transform. This is expected to be the inverse of torch.stft.
r
"""Inverse short time Fourier Transform. This is expected to be the inverse of torch.stft.
It has the same parameters (+ additional optional parameter of ``length``) and it should return the
It has the same parameters (+ additional optional parameter of ``length``) and it should return the
least squares estimation of the original signal. The algorithm will check using the NOLA condition (
least squares estimation of the original signal. The algorithm will check using the NOLA condition (
...
@@ -103,26 +103,26 @@ def istft(
...
@@ -103,26 +103,26 @@ def istft(
IEEE Trans. ASSP, vol.32, no.2, pp.236-243, Apr. 1984.
IEEE Trans. ASSP, vol.32, no.2, pp.236-243, Apr. 1984.
Args:
Args:
stft_matrix (
torch.
Tensor): Output of stft where each row of a channel is a frequency and each
stft_matrix (Tensor): Output of stft where each row of a channel is a frequency and each
column is a window. It has a size of either (..., fft_size, n_frame, 2)
column is a window. It has a size of either (..., fft_size, n_frame, 2)
n_fft (int): Size of Fourier transform
n_fft (int): Size of Fourier transform
hop_length (
O
ptional
[int]
): The distance between neighboring sliding window frames.
hop_length (
int or None, o
ptional): The distance between neighboring sliding window frames.
(Default: ``win_length // 4``)
(Default: ``win_length // 4``)
win_length (
O
ptional
[int]
): The size of window frame and STFT filter. (Default: ``n_fft``)
win_length (
int or None, o
ptional): The size of window frame and STFT filter. (Default: ``n_fft``)
window (
Optional[torch.Tensor]
): The optional window function.
window (
Tensor or None, optional
): The optional window function.
(Default: ``torch.ones(win_length)``)
(Default: ``torch.ones(win_length)``)
center (bool): Whether ``input`` was padded on both sides so
center (bool
, optional
): Whether ``input`` was padded on both sides so
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
(Default: ``True``)
(Default: ``True``)
pad_mode (str): Controls the padding method used when ``center`` is True. (Default:
pad_mode (str
, optional
): Controls the padding method used when ``center`` is True. (Default:
``
'
reflect
'
``)
``
"
reflect
"
``)
normalized (bool): Whether the STFT was normalized. (Default: ``False``)
normalized (bool
, optional
): Whether the STFT was normalized. (Default: ``False``)
onesided (bool): Whether the STFT is onesided. (Default: ``True``)
onesided (bool
, optional
): Whether the STFT is onesided. (Default: ``True``)
length (
O
ptional
[int]
): The amount to trim the signal by (i.e. the
length (
int or None, o
ptional): The amount to trim the signal by (i.e. the
original signal length). (Default: whole signal)
original signal length). (Default: whole signal)
Returns:
Returns:
torch.
Tensor: Least squares estimation of the original signal of size (..., signal_length)
Tensor: Least squares estimation of the original signal of size (..., signal_length)
"""
"""
stft_matrix_dim
=
stft_matrix
.
dim
()
stft_matrix_dim
=
stft_matrix
.
dim
()
assert
3
<=
stft_matrix_dim
,
"Incorrect stft dimension: %d"
%
(
stft_matrix_dim
)
assert
3
<=
stft_matrix_dim
,
"Incorrect stft dimension: %d"
%
(
stft_matrix_dim
)
...
@@ -226,26 +226,32 @@ def istft(
...
@@ -226,26 +226,32 @@ def istft(
def
spectrogram
(
def
spectrogram
(
waveform
,
pad
,
window
,
n_fft
,
hop_length
,
win_length
,
power
,
normalized
waveform
:
Tensor
,
):
pad
:
int
,
# type: (Tensor, int, Tensor, int, int, int, Optional[float], bool) -> Tensor
window
:
Tensor
,
n_fft
:
int
,
hop_length
:
int
,
win_length
:
int
,
power
:
Optional
[
float
],
normalized
:
bool
)
->
Tensor
:
r
"""Create a spectrogram or a batch of spectrograms from a raw audio signal.
r
"""Create a spectrogram or a batch of spectrograms from a raw audio signal.
The spectrogram can be either magnitude-only or complex.
The spectrogram can be either magnitude-only or complex.
Args:
Args:
waveform (
torch.
Tensor): Tensor of audio of dimension (..., time)
waveform (Tensor): Tensor of audio of dimension (..., time)
pad (int): Two sided padding of signal
pad (int): Two sided padding of signal
window (
torch.
Tensor): Window tensor that is applied/multiplied to each frame/window
window (Tensor): Window tensor that is applied/multiplied to each frame/window
n_fft (int): Size of FFT
n_fft (int): Size of FFT
hop_length (int): Length of hop between STFT windows
hop_length (int): Length of hop between STFT windows
win_length (int): Window size
win_length (int): Window size
power (float): Exponent for the magnitude spectrogram,
power (float
or None
): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc.
(must be > 0) e.g., 1 for energy, 2 for power, etc.
If None, then the complex spectrum is returned instead.
If None, then the complex spectrum is returned instead.
normalized (bool): Whether to normalize by magnitude after stft
normalized (bool): Whether to normalize by magnitude after stft
Returns:
Returns:
torch.
Tensor: Dimension (..., freq, time), freq is
Tensor: Dimension (..., freq, time), freq is
``n_fft // 2 + 1`` and ``n_fft`` is the number of
``n_fft // 2 + 1`` and ``n_fft`` is the number of
Fourier bins, and time is the number of window hops (n_frame).
Fourier bins, and time is the number of window hops (n_frame).
"""
"""
...
@@ -275,9 +281,18 @@ def spectrogram(
...
@@ -275,9 +281,18 @@ def spectrogram(
def
griffinlim
(
def
griffinlim
(
specgram
,
window
,
n_fft
,
hop_length
,
win_length
,
power
,
normalized
,
n_iter
,
momentum
,
length
,
rand_init
specgram
:
Tensor
,
):
window
:
Tensor
,
# type: (Tensor, Tensor, int, int, int, float, bool, int, float, Optional[int], bool) -> Tensor
n_fft
:
int
,
hop_length
:
int
,
win_length
:
int
,
power
:
float
,
normalized
:
bool
,
n_iter
:
int
,
momentum
:
float
,
length
:
Optional
[
int
],
rand_init
:
bool
)
->
Tensor
:
r
"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation.
r
"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation.
Implementation ported from `librosa`.
Implementation ported from `librosa`.
...
@@ -295,22 +310,22 @@ def griffinlim(
...
@@ -295,22 +310,22 @@ def griffinlim(
IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984.
IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984.
Args:
Args:
specgram (
torch.
Tensor): A magnitude-only STFT spectrogram of dimension (..., freq, frames)
specgram (Tensor): A magnitude-only STFT spectrogram of dimension (..., freq, frames)
where freq is ``n_fft // 2 + 1``.
where freq is ``n_fft // 2 + 1``.
window (
torch.
Tensor): Window tensor that is applied/multiplied to each frame/window
window (Tensor): Window tensor that is applied/multiplied to each frame/window
n_fft (int): Size of FFT, creates ``n_fft // 2 + 1`` bins
n_fft (int): Size of FFT, creates ``n_fft // 2 + 1`` bins
hop_length (int): Length of hop between STFT windows. (
hop_length (int): Length of hop between STFT windows. (
Default: ``win_length // 2``)
Default: ``win_length // 2``)
win_length (int): Window size. (Default: ``n_fft``)
win_length (int): Window size. (Default: ``n_fft``)
power (float): Exponent for the magnitude spectrogram,
power (float): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc.
(Default: ``2``)
(must be > 0) e.g., 1 for energy, 2 for power, etc.
normalized (bool): Whether to normalize by magnitude after stft.
(Default: ``False``)
normalized (bool): Whether to normalize by magnitude after stft.
n_iter (int): Number of iteration for phase recovery process.
n_iter (int): Number of iteration for phase recovery process.
momentum (float): The momentum parameter for fast Griffin-Lim.
momentum (float): The momentum parameter for fast Griffin-Lim.
Setting this to 0 recovers the original Griffin-Lim method.
Setting this to 0 recovers the original Griffin-Lim method.
Values near 1 can lead to faster convergence, but above 1 may not converge.
(Default: 0.99)
Values near 1 can lead to faster convergence, but above 1 may not converge.
length (
Optional[int]
): Array length of the expected output.
(Default: ``None``)
length (
int or None
): Array length of the expected output.
rand_init (bool): Initializes phase randomly if True, to zero otherwise.
(Default: ``True``)
rand_init (bool): Initializes phase randomly if True, to zero otherwise.
Returns:
Returns:
torch.Tensor: waveform of (..., time), where time equals the ``length`` parameter if given.
torch.Tensor: waveform of (..., time), where time equals the ``length`` parameter if given.
...
@@ -331,7 +346,7 @@ def griffinlim(
...
@@ -331,7 +346,7 @@ def griffinlim(
else
:
else
:
angles
=
torch
.
zeros
(
batch
,
freq
,
frames
)
angles
=
torch
.
zeros
(
batch
,
freq
,
frames
)
angles
=
torch
.
stack
([
angles
.
cos
(),
angles
.
sin
()],
dim
=-
1
)
\
angles
=
torch
.
stack
([
angles
.
cos
(),
angles
.
sin
()],
dim
=-
1
)
\
.
to
(
dtype
=
specgram
.
dtype
,
device
=
specgram
.
device
)
.
to
(
dtype
=
specgram
.
dtype
,
device
=
specgram
.
device
)
specgram
=
specgram
.
unsqueeze
(
-
1
).
expand_as
(
angles
)
specgram
=
specgram
.
unsqueeze
(
-
1
).
expand_as
(
angles
)
# And initialize the previous iterate to 0
# And initialize the previous iterate to 0
...
@@ -371,8 +386,13 @@ def griffinlim(
...
@@ -371,8 +386,13 @@ def griffinlim(
return
waveform
return
waveform
def
amplitude_to_DB
(
x
,
multiplier
,
amin
,
db_multiplier
,
top_db
=
None
):
def
amplitude_to_DB
(
# type: (Tensor, float, float, float, Optional[float]) -> Tensor
x
:
Tensor
,
multiplier
:
float
,
amin
:
float
,
db_multiplier
:
float
,
top_db
:
Optional
[
float
]
=
None
)
->
Tensor
:
r
"""Turn a tensor from the power/amplitude scale to the decibel scale.
r
"""Turn a tensor from the power/amplitude scale to the decibel scale.
This output depends on the maximum value in the input tensor, and so
This output depends on the maximum value in the input tensor, and so
...
@@ -380,15 +400,15 @@ def amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None):
...
@@ -380,15 +400,15 @@ def amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None):
a full clip.
a full clip.
Args:
Args:
x (
torch.
Tensor): Input tensor before being converted to decibel scale
x (Tensor): Input tensor before being converted to decibel scale
multiplier (float): Use 10. for power and 20. for amplitude
multiplier (float): Use 10. for power and 20. for amplitude
amin (float): Number to clamp ``x``
amin (float): Number to clamp ``x``
db_multiplier (float): Log10(max(reference value and amin))
db_multiplier (float): Log10(max(reference value and amin))
top_db (
Optional[float]
): Minimum negative cut-off in decibels. A reasonable number
top_db (
float or None, optional
): Minimum negative cut-off in decibels. A reasonable number
is 80. (Default: ``None``)
is 80. (Default: ``None``)
Returns:
Returns:
torch.
Tensor: Output tensor in decibel scale
Tensor: Output tensor in decibel scale
"""
"""
x_db
=
multiplier
*
torch
.
log10
(
torch
.
clamp
(
x
,
min
=
amin
))
x_db
=
multiplier
*
torch
.
log10
(
torch
.
clamp
(
x
,
min
=
amin
))
x_db
-=
multiplier
*
db_multiplier
x_db
-=
multiplier
*
db_multiplier
...
@@ -399,23 +419,31 @@ def amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None):
...
@@ -399,23 +419,31 @@ def amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None):
return
x_db
return
x_db
def
DB_to_amplitude
(
x
,
ref
,
power
):
def
DB_to_amplitude
(
# type: (Tensor, float, float) -> Tensor
x
:
Tensor
,
ref
:
float
,
power
:
float
)
->
Tensor
:
r
"""Turn a tensor from the decibel scale to the power/amplitude scale.
r
"""Turn a tensor from the decibel scale to the power/amplitude scale.
Args:
Args:
x (
torch.
Tensor): Input tensor before being converted to power/amplitude scale.
x (Tensor): Input tensor before being converted to power/amplitude scale.
ref (float): Reference which the output will be scaled by.
ref (float): Reference which the output will be scaled by.
power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude.
power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude.
Returns:
Returns:
torch.
Tensor: Output tensor in power/amplitude scale.
Tensor: Output tensor in power/amplitude scale.
"""
"""
return
ref
*
torch
.
pow
(
torch
.
pow
(
10.0
,
0.1
*
x
),
power
)
return
ref
*
torch
.
pow
(
torch
.
pow
(
10.0
,
0.1
*
x
),
power
)
def
create_fb_matrix
(
n_freqs
,
f_min
,
f_max
,
n_mels
,
sample_rate
):
def
create_fb_matrix
(
# type: (int, float, float, int, int) -> Tensor
n_freqs
:
int
,
f_min
:
float
,
f_max
:
float
,
n_mels
:
int
,
sample_rate
:
int
)
->
Tensor
:
r
"""Create a frequency bin conversion matrix.
r
"""Create a frequency bin conversion matrix.
Args:
Args:
...
@@ -426,7 +454,7 @@ def create_fb_matrix(n_freqs, f_min, f_max, n_mels, sample_rate):
...
@@ -426,7 +454,7 @@ def create_fb_matrix(n_freqs, f_min, f_max, n_mels, sample_rate):
sample_rate (int): Sample rate of the audio waveform
sample_rate (int): Sample rate of the audio waveform
Returns:
Returns:
torch.
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
meaning number of frequencies to highlight/apply to x the number of filterbanks.
meaning number of frequencies to highlight/apply to x the number of filterbanks.
Each column is a filterbank so that assuming there is a matrix A of
Each column is a filterbank so that assuming there is a matrix A of
size (..., ``n_freqs``), the applied result would be
size (..., ``n_freqs``), the applied result would be
...
@@ -456,18 +484,21 @@ def create_fb_matrix(n_freqs, f_min, f_max, n_mels, sample_rate):
...
@@ -456,18 +484,21 @@ def create_fb_matrix(n_freqs, f_min, f_max, n_mels, sample_rate):
return
fb
return
fb
def
create_dct
(
n_mfcc
,
n_mels
,
norm
):
def
create_dct
(
# type: (int, int, Optional[str]) -> Tensor
n_mfcc
:
int
,
n_mels
:
int
,
norm
:
Optional
[
str
]
)
->
Tensor
:
r
"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``),
r
"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``),
normalized depending on norm.
normalized depending on norm.
Args:
Args:
n_mfcc (int): Number of mfc coefficients to retain
n_mfcc (int): Number of mfc coefficients to retain
n_mels (int): Number of mel filterbanks
n_mels (int): Number of mel filterbanks
norm (
Optional[str]
): Norm to use (either 'ortho' or None)
norm (
str or None
): Norm to use (either 'ortho' or None)
Returns:
Returns:
torch.
Tensor: The transformation matrix, to be right-multiplied to
Tensor: The transformation matrix, to be right-multiplied to
row-wise data of size (``n_mels``, ``n_mfcc``).
row-wise data of size (``n_mels``, ``n_mfcc``).
"""
"""
# http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
# http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
...
@@ -483,8 +514,10 @@ def create_dct(n_mfcc, n_mels, norm):
...
@@ -483,8 +514,10 @@ def create_dct(n_mfcc, n_mels, norm):
return
dct
.
t
()
return
dct
.
t
()
def
mu_law_encoding
(
x
,
quantization_channels
):
def
mu_law_encoding
(
# type: (Tensor, int) -> Tensor
x
:
Tensor
,
quantization_channels
:
int
)
->
Tensor
:
r
"""Encode signal based on mu-law companding. For more info see the
r
"""Encode signal based on mu-law companding. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
...
@@ -492,11 +525,11 @@ def mu_law_encoding(x, quantization_channels):
...
@@ -492,11 +525,11 @@ def mu_law_encoding(x, quantization_channels):
returns a signal encoded with values from 0 to quantization_channels - 1.
returns a signal encoded with values from 0 to quantization_channels - 1.
Args:
Args:
x (
torch.
Tensor): Input tensor
x (Tensor): Input tensor
quantization_channels (int): Number of channels
quantization_channels (int): Number of channels
Returns:
Returns:
torch.
Tensor: Input after mu-law encoding
Tensor: Input after mu-law encoding
"""
"""
mu
=
quantization_channels
-
1.0
mu
=
quantization_channels
-
1.0
if
not
x
.
is_floating_point
():
if
not
x
.
is_floating_point
():
...
@@ -507,8 +540,10 @@ def mu_law_encoding(x, quantization_channels):
...
@@ -507,8 +540,10 @@ def mu_law_encoding(x, quantization_channels):
return
x_mu
return
x_mu
def
mu_law_decoding
(
x_mu
,
quantization_channels
):
def
mu_law_decoding
(
# type: (Tensor, int) -> Tensor
x_mu
:
Tensor
,
quantization_channels
:
int
)
->
Tensor
:
r
"""Decode mu-law encoded signal. For more info see the
r
"""Decode mu-law encoded signal. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
...
@@ -516,11 +551,11 @@ def mu_law_decoding(x_mu, quantization_channels):
...
@@ -516,11 +551,11 @@ def mu_law_decoding(x_mu, quantization_channels):
and returns a signal scaled between -1 and 1.
and returns a signal scaled between -1 and 1.
Args:
Args:
x_mu (
torch.
Tensor): Input tensor
x_mu (Tensor): Input tensor
quantization_channels (int): Number of channels
quantization_channels (int): Number of channels
Returns:
Returns:
torch.
Tensor: Input after mu-law decoding
Tensor: Input after mu-law decoding
"""
"""
mu
=
quantization_channels
-
1.0
mu
=
quantization_channels
-
1.0
if
not
x_mu
.
is_floating_point
():
if
not
x_mu
.
is_floating_point
():
...
@@ -531,65 +566,71 @@ def mu_law_decoding(x_mu, quantization_channels):
...
@@ -531,65 +566,71 @@ def mu_law_decoding(x_mu, quantization_channels):
return
x
return
x
def
complex_norm
(
complex_tensor
,
power
=
1.0
):
def
complex_norm
(
# type: (Tensor, float) -> Tensor
complex_tensor
:
Tensor
,
power
:
float
=
1.0
)
->
Tensor
:
r
"""Compute the norm of complex tensor input.
r
"""Compute the norm of complex tensor input.
Args:
Args:
complex_tensor (
torch.
Tensor): Tensor shape of `(..., complex=2)`
complex_tensor (Tensor): Tensor shape of `(..., complex=2)`
power (float): Power of the norm. (Default: `1.0`).
power (float): Power of the norm. (Default: `1.0`).
Returns:
Returns:
torch.
Tensor: Power of the normed input tensor. Shape of `(..., )`
Tensor: Power of the normed input tensor. Shape of `(..., )`
"""
"""
if
power
==
1.0
:
if
power
==
1.0
:
return
torch
.
norm
(
complex_tensor
,
2
,
-
1
)
return
torch
.
norm
(
complex_tensor
,
2
,
-
1
)
return
torch
.
norm
(
complex_tensor
,
2
,
-
1
).
pow
(
power
)
return
torch
.
norm
(
complex_tensor
,
2
,
-
1
).
pow
(
power
)
def
angle
(
complex_tensor
):
def
angle
(
# type: (Tensor) -> Tensor
complex_tensor
:
Tensor
)
->
Tensor
:
r
"""Compute the angle of complex tensor input.
r
"""Compute the angle of complex tensor input.
Args:
Args:
complex_tensor (
torch.
Tensor): Tensor shape of `(..., complex=2)`
complex_tensor (Tensor): Tensor shape of `(..., complex=2)`
Return:
Return:
torch.
Tensor: Angle of a complex tensor. Shape of `(..., )`
Tensor: Angle of a complex tensor. Shape of `(..., )`
"""
"""
return
torch
.
atan2
(
complex_tensor
[...,
1
],
complex_tensor
[...,
0
])
return
torch
.
atan2
(
complex_tensor
[...,
1
],
complex_tensor
[...,
0
])
def
magphase
(
complex_tensor
,
power
=
1.0
):
def
magphase
(
# type: (Tensor, float) -> Tuple[Tensor, Tensor]
complex_tensor
:
Tensor
,
power
:
float
=
1.0
)
->
Tuple
[
Tensor
,
Tensor
]:
r
"""Separate a complex-valued spectrogram with shape `(..., 2)` into its magnitude and phase.
r
"""Separate a complex-valued spectrogram with shape `(..., 2)` into its magnitude and phase.
Args:
Args:
complex_tensor (
torch.
Tensor): Tensor shape of `(..., complex=2)`
complex_tensor (Tensor): Tensor shape of `(..., complex=2)`
power (float): Power of the norm. (Default: `1.0`)
power (float): Power of the norm. (Default: `1.0`)
Returns:
Returns:
Tuple[torch.
Tensor,
torch.
Tensor
]
: The magnitude and phase of the complex tensor
(
Tensor, Tensor
)
: The magnitude and phase of the complex tensor
"""
"""
mag
=
complex_norm
(
complex_tensor
,
power
)
mag
=
complex_norm
(
complex_tensor
,
power
)
phase
=
angle
(
complex_tensor
)
phase
=
angle
(
complex_tensor
)
return
mag
,
phase
return
mag
,
phase
def
phase_vocoder
(
complex_specgrams
,
rate
,
phase_advance
):
def
phase_vocoder
(
# type: (Tensor, float, Tensor) -> Tensor
complex_specgrams
:
Tensor
,
rate
:
float
,
phase_advance
:
Tensor
)
->
Tensor
:
r
"""Given a STFT tensor, speed up in time without modifying pitch by a
r
"""Given a STFT tensor, speed up in time without modifying pitch by a
factor of ``rate``.
factor of ``rate``.
Args:
Args:
complex_specgrams (
torch.
Tensor): Dimension of `(..., freq, time, complex=2)`
complex_specgrams (Tensor): Dimension of `(..., freq, time, complex=2)`
rate (float): Speed-up factor
rate (float): Speed-up factor
phase_advance (torch.Tensor): Expected phase advance in each bin. Dimension
phase_advance (Tensor): Expected phase advance in each bin. Dimension of (freq, 1)
of (freq, 1)
Returns:
Returns:
complex_specgrams_stretch (torch.Tensor): Dimension of `(...,
Tensor: Complex Specgrams Stretch with dimension of `(..., freq, ceil(time/rate), complex=2)`
freq, ceil(time/rate), complex=2)`
Example
Example
>>> freq, hop_length = 1025, 512
>>> freq, hop_length = 1025, 512
...
@@ -650,22 +691,24 @@ def phase_vocoder(complex_specgrams, rate, phase_advance):
...
@@ -650,22 +691,24 @@ def phase_vocoder(complex_specgrams, rate, phase_advance):
return
complex_specgrams_stretch
return
complex_specgrams_stretch
def
lfilter
(
waveform
,
a_coeffs
,
b_coeffs
):
def
lfilter
(
# type: (Tensor, Tensor, Tensor) -> Tensor
waveform
:
Tensor
,
a_coeffs
:
Tensor
,
b_coeffs
:
Tensor
)
->
Tensor
:
r
"""Perform an IIR filter by evaluating difference equation.
r
"""Perform an IIR filter by evaluating difference equation.
Args:
Args:
waveform (
torch.
Tensor): audio waveform of dimension of `(..., time)`. Must be normalized to -1 to 1.
waveform (Tensor): audio waveform of dimension of `(..., time)`. Must be normalized to -1 to 1.
a_coeffs (
torch.
Tensor): denominator coefficients of difference equation of dimension of `(n_order + 1)`.
a_coeffs (Tensor): denominator coefficients of difference equation of dimension of `(n_order + 1)`.
Lower delays coefficients are first, e.g. `[a0, a1, a2, ...]`.
Lower delays coefficients are first, e.g. `[a0, a1, a2, ...]`.
Must be same size as b_coeffs (pad with 0's as necessary).
Must be same size as b_coeffs (pad with 0's as necessary).
b_coeffs (
torch.
Tensor): numerator coefficients of difference equation of dimension of `(n_order + 1)`.
b_coeffs (Tensor): numerator coefficients of difference equation of dimension of `(n_order + 1)`.
Lower delays coefficients are first, e.g. `[b0, b1, b2, ...]`.
Lower delays coefficients are first, e.g. `[b0, b1, b2, ...]`.
Must be same size as a_coeffs (pad with 0's as necessary).
Must be same size as a_coeffs (pad with 0's as necessary).
Returns:
Returns:
output_waveform (torch.Tensor): Dimension of `(..., time)`. Output will be clipped to -1 to 1.
Tensor: Waveform with dimension of `(..., time)`. Output will be clipped to -1 to 1.
"""
"""
dim
=
waveform
.
dim
()
dim
=
waveform
.
dim
()
...
@@ -674,17 +717,17 @@ def lfilter(waveform, a_coeffs, b_coeffs):
...
@@ -674,17 +717,17 @@ def lfilter(waveform, a_coeffs, b_coeffs):
shape
=
waveform
.
size
()
shape
=
waveform
.
size
()
waveform
=
waveform
.
view
(
-
1
,
shape
[
-
1
])
waveform
=
waveform
.
view
(
-
1
,
shape
[
-
1
])
assert
(
a_coeffs
.
size
(
0
)
==
b_coeffs
.
size
(
0
))
assert
(
a_coeffs
.
size
(
0
)
==
b_coeffs
.
size
(
0
))
assert
(
len
(
waveform
.
size
())
==
2
)
assert
(
len
(
waveform
.
size
())
==
2
)
assert
(
waveform
.
device
==
a_coeffs
.
device
)
assert
(
waveform
.
device
==
a_coeffs
.
device
)
assert
(
b_coeffs
.
device
==
a_coeffs
.
device
)
assert
(
b_coeffs
.
device
==
a_coeffs
.
device
)
device
=
waveform
.
device
device
=
waveform
.
device
dtype
=
waveform
.
dtype
dtype
=
waveform
.
dtype
n_channel
,
n_sample
=
waveform
.
size
()
n_channel
,
n_sample
=
waveform
.
size
()
n_order
=
a_coeffs
.
size
(
0
)
n_order
=
a_coeffs
.
size
(
0
)
n_sample_padded
=
n_sample
+
n_order
-
1
n_sample_padded
=
n_sample
+
n_order
-
1
assert
(
n_order
>
0
)
assert
(
n_order
>
0
)
# Pad the input and create output
# Pad the input and create output
padded_waveform
=
torch
.
zeros
(
n_channel
,
n_sample_padded
,
dtype
=
dtype
,
device
=
device
)
padded_waveform
=
torch
.
zeros
(
n_channel
,
n_sample_padded
,
dtype
=
dtype
,
device
=
device
)
...
@@ -720,13 +763,20 @@ def lfilter(waveform, a_coeffs, b_coeffs):
...
@@ -720,13 +763,20 @@ def lfilter(waveform, a_coeffs, b_coeffs):
return
output
return
output
def
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
):
def
biquad
(
# type: (Tensor, float, float, float, float, float, float) -> Tensor
waveform
:
Tensor
,
b0
:
float
,
b1
:
float
,
b2
:
float
,
a0
:
float
,
a1
:
float
,
a2
:
float
)
->
Tensor
:
r
"""Perform a biquad filter of input tensor. Initial conditions set to 0.
r
"""Perform a biquad filter of input tensor. Initial conditions set to 0.
https://en.wikipedia.org/wiki/Digital_biquad_filter
https://en.wikipedia.org/wiki/Digital_biquad_filter
Args:
Args:
waveform (
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform (Tensor): audio waveform of dimension of `(..., time)`
b0 (float): numerator coefficient of current input, x[n]
b0 (float): numerator coefficient of current input, x[n]
b1 (float): numerator coefficient of input one time step ago x[n-1]
b1 (float): numerator coefficient of input one time step ago x[n-1]
b2 (float): numerator coefficient of input two time steps ago x[n-2]
b2 (float): numerator coefficient of input two time steps ago x[n-2]
...
@@ -735,7 +785,7 @@ def biquad(waveform, b0, b1, b2, a0, a1, a2):
...
@@ -735,7 +785,7 @@ def biquad(waveform, b0, b1, b2, a0, a1, a2):
a2 (float): denominator coefficient of current output y[n-2]
a2 (float): denominator coefficient of current output y[n-2]
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform with d
imension of `(..., time)`
"""
"""
device
=
waveform
.
device
device
=
waveform
.
device
...
@@ -749,23 +799,26 @@ def biquad(waveform, b0, b1, b2, a0, a1, a2):
...
@@ -749,23 +799,26 @@ def biquad(waveform, b0, b1, b2, a0, a1, a2):
return
output_waveform
return
output_waveform
def
_dB2Linear
(
x
):
def
_dB2Linear
(
x
:
float
)
->
float
:
# type: (float) -> float
return
math
.
exp
(
x
*
math
.
log
(
10
)
/
20.0
)
return
math
.
exp
(
x
*
math
.
log
(
10
)
/
20.0
)
def
highpass_biquad
(
waveform
,
sample_rate
,
cutoff_freq
,
Q
=
0.707
):
def
highpass_biquad
(
# type: (Tensor, int, float, float) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
,
cutoff_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad highpass filter and perform filtering. Similar to SoX implementation.
r
"""Design biquad highpass filter and perform filtering. Similar to SoX implementation.
Args:
Args:
waveform (
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
cutoff_freq (float): filter cutoff frequency
Q (float): https://en.wikipedia.org/wiki/Q_factor
Q (float
, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform d
imension of `(..., time)`
"""
"""
GAIN
=
1.
GAIN
=
1.
...
@@ -783,18 +836,22 @@ def highpass_biquad(waveform, sample_rate, cutoff_freq, Q=0.707):
...
@@ -783,18 +836,22 @@ def highpass_biquad(waveform, sample_rate, cutoff_freq, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
lowpass_biquad
(
waveform
,
sample_rate
,
cutoff_freq
,
Q
=
0.707
):
def
lowpass_biquad
(
# type: (Tensor, int, float, float) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
,
cutoff_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad lowpass filter and perform filtering. Similar to SoX implementation.
r
"""Design biquad lowpass filter and perform filtering. Similar to SoX implementation.
Args:
Args:
waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
cutoff_freq (float): filter cutoff frequency
Q (float): https://en.wikipedia.org/wiki/Q_factor
Q (float
, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
"""
"""
GAIN
=
1.
GAIN
=
1.
...
@@ -812,18 +869,22 @@ def lowpass_biquad(waveform, sample_rate, cutoff_freq, Q=0.707):
...
@@ -812,18 +869,22 @@ def lowpass_biquad(waveform, sample_rate, cutoff_freq, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
allpass_biquad
(
waveform
,
sample_rate
,
central_freq
,
Q
=
0.707
):
def
allpass_biquad
(
# type: (Tensor, int, float, float) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design two-pole all-pass filter. Similar to SoX implementation.
r
"""Design two-pole all-pass filter. Similar to SoX implementation.
Args:
Args:
waveform(torch.Tensor): audio waveform of dimension of `(..., time)`
waveform(torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
central_freq (float): central frequency (in Hz)
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
References:
http://sox.sourceforge.net/sox.html
http://sox.sourceforge.net/sox.html
...
@@ -841,20 +902,25 @@ def allpass_biquad(waveform, sample_rate, central_freq, Q=0.707):
...
@@ -841,20 +902,25 @@ def allpass_biquad(waveform, sample_rate, central_freq, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
bandpass_biquad
(
waveform
,
sample_rate
,
central_freq
,
Q
=
0.707
,
const_skirt_gain
=
False
):
def
bandpass_biquad
(
# type: (Tensor, int, float, float, bool) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
,
const_skirt_gain
:
bool
=
False
)
->
Tensor
:
r
"""Design two-pole band-pass filter. Similar to SoX implementation.
r
"""Design two-pole band-pass filter. Similar to SoX implementation.
Args:
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
central_freq (float): central frequency (in Hz)
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
const_skirt_gain (bool) : If ``True``, uses a constant skirt gain (peak gain = Q).
const_skirt_gain (bool
, optional
) : If ``True``, uses a constant skirt gain (peak gain = Q).
If ``False``, uses a constant 0dB peak gain. (Default: ``False``)
If ``False``, uses a constant 0dB peak gain. (Default: ``False``)
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
References:
http://sox.sourceforge.net/sox.html
http://sox.sourceforge.net/sox.html
...
@@ -873,18 +939,22 @@ def bandpass_biquad(waveform, sample_rate, central_freq, Q=0.707, const_skirt_ga
...
@@ -873,18 +939,22 @@ def bandpass_biquad(waveform, sample_rate, central_freq, Q=0.707, const_skirt_ga
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
bandreject_biquad
(
waveform
,
sample_rate
,
central_freq
,
Q
=
0.707
):
def
bandreject_biquad
(
# type: (Tensor, int, float, float) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design two-pole band-reject filter. Similar to SoX implementation.
r
"""Design two-pole band-reject filter. Similar to SoX implementation.
Args:
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
central_freq (float): central frequency (in Hz)
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
References:
http://sox.sourceforge.net/sox.html
http://sox.sourceforge.net/sox.html
...
@@ -902,19 +972,24 @@ def bandreject_biquad(waveform, sample_rate, central_freq, Q=0.707):
...
@@ -902,19 +972,24 @@ def bandreject_biquad(waveform, sample_rate, central_freq, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
equalizer_biquad
(
waveform
,
sample_rate
,
center_freq
,
gain
,
Q
=
0.707
):
def
equalizer_biquad
(
# type: (Tensor, int, float, float, float) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
,
center_freq
:
float
,
gain
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad peaking equalizer filter and perform filtering. Similar to SoX implementation.
r
"""Design biquad peaking equalizer filter and perform filtering. Similar to SoX implementation.
Args:
Args:
waveform (
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
center_freq (float): filter's central frequency
center_freq (float): filter's central frequency
gain (float): desired gain at the boost (or attenuation) in dB
gain (float): desired gain at the boost (or attenuation) in dB
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
"""
"""
w0
=
2
*
math
.
pi
*
center_freq
/
sample_rate
w0
=
2
*
math
.
pi
*
center_freq
/
sample_rate
A
=
math
.
exp
(
gain
/
40.0
*
math
.
log
(
10
))
A
=
math
.
exp
(
gain
/
40.0
*
math
.
log
(
10
))
...
@@ -929,21 +1004,26 @@ def equalizer_biquad(waveform, sample_rate, center_freq, gain, Q=0.707):
...
@@ -929,21 +1004,26 @@ def equalizer_biquad(waveform, sample_rate, center_freq, gain, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
band_biquad
(
waveform
,
sample_rate
,
central_freq
,
Q
=
0.707
,
noise
=
False
):
def
band_biquad
(
# type: (Tensor, int, float, float, bool) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
,
noise
:
bool
=
False
)
->
Tensor
:
r
"""Design two-pole band filter. Similar to SoX implementation.
r
"""Design two-pole band filter. Similar to SoX implementation.
Args:
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
central_freq (float): central frequency (in Hz)
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``).
noise (bool) : If ``True``, uses the alternate mode for un-pitched audio (e.g. percussion).
noise (bool
, optional
) : If ``True``, uses the alternate mode for un-pitched audio (e.g. percussion).
If ``False``, uses mode oriented to pitched audio, i.e. voice, singing,
If ``False``, uses mode oriented to pitched audio, i.e. voice, singing,
or instrumental music
.
(Default: ``False``)
or instrumental music (Default: ``False``)
.
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
References:
http://sox.sourceforge.net/sox.html
http://sox.sourceforge.net/sox.html
...
@@ -969,19 +1049,24 @@ def band_biquad(waveform, sample_rate, central_freq, Q=0.707, noise=False):
...
@@ -969,19 +1049,24 @@ def band_biquad(waveform, sample_rate, central_freq, Q=0.707, noise=False):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
treble_biquad
(
waveform
,
sample_rate
,
gain
,
central_freq
=
3000
,
Q
=
0.707
):
def
treble_biquad
(
# type: (Tensor, int, float, float, float) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
,
gain
:
float
,
central_freq
:
float
=
3000
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design a treble tone-control effect. Similar to SoX implementation.
r
"""Design a treble tone-control effect. Similar to SoX implementation.
Args:
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
gain (float): desired gain at the boost (or attenuation) in dB.
gain (float): desired gain at the boost (or attenuation) in dB.
central_freq (float): central frequency (in Hz). (Default: ``3000``)
central_freq (float
, optional
): central frequency (in Hz). (Default: ``3000``)
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``).
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
References:
http://sox.sourceforge.net/sox.html
http://sox.sourceforge.net/sox.html
...
@@ -1005,16 +1090,18 @@ def treble_biquad(waveform, sample_rate, gain, central_freq=3000, Q=0.707):
...
@@ -1005,16 +1090,18 @@ def treble_biquad(waveform, sample_rate, gain, central_freq=3000, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
deemph_biquad
(
waveform
,
sample_rate
):
def
deemph_biquad
(
# type: (Tensor, int) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
)
->
Tensor
:
r
"""Apply ISO 908 CD de-emphasis (shelving) IIR filter. Similar to SoX implementation.
r
"""Apply ISO 908 CD de-emphasis (shelving) IIR filter. Similar to SoX implementation.
Args:
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, Allowed sample rate ``44100`` or ``48000``
sample_rate (int): sampling rate of the waveform, Allowed sample rate ``44100`` or ``48000``
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
References:
http://sox.sourceforge.net/sox.html
http://sox.sourceforge.net/sox.html
...
@@ -1050,17 +1137,19 @@ def deemph_biquad(waveform, sample_rate):
...
@@ -1050,17 +1137,19 @@ def deemph_biquad(waveform, sample_rate):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
riaa_biquad
(
waveform
,
sample_rate
):
def
riaa_biquad
(
# type: (Tensor, int) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
)
->
Tensor
:
r
"""Apply RIAA vinyl playback equalisation. Similar to SoX implementation.
r
"""Apply RIAA vinyl playback equalisation. Similar to SoX implementation.
Args:
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz).
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz).
Allowed sample rates in Hz : ``44100``,``48000``,``88200``,``96000``
Allowed sample rates in Hz : ``44100``,``48000``,``88200``,``96000``
Returns:
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
References:
http://sox.sourceforge.net/sox.html
http://sox.sourceforge.net/sox.html
...
@@ -1102,7 +1191,7 @@ def riaa_biquad(waveform, sample_rate):
...
@@ -1102,7 +1191,7 @@ def riaa_biquad(waveform, sample_rate):
a_re
=
a0
+
a1
*
math
.
cos
(
-
y
)
+
a2
*
math
.
cos
(
-
2
*
y
)
a_re
=
a0
+
a1
*
math
.
cos
(
-
y
)
+
a2
*
math
.
cos
(
-
2
*
y
)
b_im
=
b1
*
math
.
sin
(
-
y
)
+
b2
*
math
.
sin
(
-
2
*
y
)
b_im
=
b1
*
math
.
sin
(
-
y
)
+
b2
*
math
.
sin
(
-
2
*
y
)
a_im
=
a1
*
math
.
sin
(
-
y
)
+
a2
*
math
.
sin
(
-
2
*
y
)
a_im
=
a1
*
math
.
sin
(
-
y
)
+
a2
*
math
.
sin
(
-
2
*
y
)
g
=
1
/
math
.
sqrt
((
b_re
**
2
+
b_im
**
2
)
/
(
a_re
**
2
+
a_im
**
2
))
g
=
1
/
math
.
sqrt
((
b_re
**
2
+
b_im
**
2
)
/
(
a_re
**
2
+
a_im
**
2
))
b0
*=
g
b0
*=
g
b1
*=
g
b1
*=
g
...
@@ -1111,8 +1200,12 @@ def riaa_biquad(waveform, sample_rate):
...
@@ -1111,8 +1200,12 @@ def riaa_biquad(waveform, sample_rate):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
mask_along_axis_iid
(
specgrams
,
mask_param
,
mask_value
,
axis
):
def
mask_along_axis_iid
(
# type: (Tensor, int, float, int) -> Tensor
specgrams
:
Tensor
,
mask_param
:
int
,
mask_value
:
float
,
axis
:
int
)
->
Tensor
:
r
"""
r
"""
Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where
Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where
``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``.
``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``.
...
@@ -1125,7 +1218,7 @@ def mask_along_axis_iid(specgrams, mask_param, mask_value, axis):
...
@@ -1125,7 +1218,7 @@ def mask_along_axis_iid(specgrams, mask_param, mask_value, axis):
axis (int): Axis to apply masking on (2 -> frequency, 3 -> time)
axis (int): Axis to apply masking on (2 -> frequency, 3 -> time)
Returns:
Returns:
torch.
Tensor: Masked spectrograms of dimensions (batch, channel, freq, time)
Tensor: Masked spectrograms of dimensions (batch, channel, freq, time)
"""
"""
if
axis
!=
2
and
axis
!=
3
:
if
axis
!=
2
and
axis
!=
3
:
...
@@ -1147,8 +1240,12 @@ def mask_along_axis_iid(specgrams, mask_param, mask_value, axis):
...
@@ -1147,8 +1240,12 @@ def mask_along_axis_iid(specgrams, mask_param, mask_value, axis):
return
specgrams
return
specgrams
def
mask_along_axis
(
specgram
,
mask_param
,
mask_value
,
axis
):
def
mask_along_axis
(
# type: (Tensor, int, float, int) -> Tensor
specgram
:
Tensor
,
mask_param
:
int
,
mask_value
:
float
,
axis
:
int
)
->
Tensor
:
r
"""
r
"""
Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where
Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where
``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``.
``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``.
...
@@ -1161,7 +1258,7 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
...
@@ -1161,7 +1258,7 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
axis (int): Axis to apply masking on (1 -> frequency, 2 -> time)
axis (int): Axis to apply masking on (1 -> frequency, 2 -> time)
Returns:
Returns:
torch.
Tensor: Masked spectrogram of dimensions (channel, freq, time)
Tensor: Masked spectrogram of dimensions (channel, freq, time)
"""
"""
# pack batch
# pack batch
...
@@ -1188,8 +1285,11 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
...
@@ -1188,8 +1285,11 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
return
specgram
return
specgram
def
compute_deltas
(
specgram
,
win_length
=
5
,
mode
=
"replicate"
):
def
compute_deltas
(
# type: (Tensor, int, str) -> Tensor
specgram
:
Tensor
,
win_length
:
int
=
5
,
mode
:
str
=
"replicate"
)
->
Tensor
:
r
"""Compute delta coefficients of a tensor, usually a spectrogram:
r
"""Compute delta coefficients of a tensor, usually a spectrogram:
.. math::
.. math::
...
@@ -1200,12 +1300,12 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
...
@@ -1200,12 +1300,12 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
:math:`N` is (`win_length`-1)//2.
:math:`N` is (`win_length`-1)//2.
Args:
Args:
specgram (
torch.
Tensor): Tensor of audio of dimension (..., freq, time)
specgram (Tensor): Tensor of audio of dimension (..., freq, time)
win_length (int): The window length used for computing delta
win_length (int
, optional
): The window length used for computing delta
(Default: ``5``)
mode (str): Mode parameter passed to padding
mode (str
, optional
): Mode parameter passed to padding
(Default: ``"replicate"``)
Returns:
Returns:
deltas (torch.
Tensor
)
: Tensor of
audio
of dimension (..., freq, time)
Tensor: Tensor of
deltas
of dimension (..., freq, time)
Example
Example
>>> specgram = torch.randn(1, 40, 1000)
>>> specgram = torch.randn(1, 40, 1000)
...
@@ -1226,11 +1326,7 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
...
@@ -1226,11 +1326,7 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
specgram
=
torch
.
nn
.
functional
.
pad
(
specgram
,
(
n
,
n
),
mode
=
mode
)
specgram
=
torch
.
nn
.
functional
.
pad
(
specgram
,
(
n
,
n
),
mode
=
mode
)
kernel
=
(
kernel
=
(
torch
.
arange
(
-
n
,
n
+
1
,
1
,
device
=
specgram
.
device
,
dtype
=
specgram
.
dtype
).
repeat
(
specgram
.
shape
[
1
],
1
,
1
))
torch
.
arange
(
-
n
,
n
+
1
,
1
,
device
=
specgram
.
device
,
dtype
=
specgram
.
dtype
)
.
repeat
(
specgram
.
shape
[
1
],
1
,
1
)
)
output
=
torch
.
nn
.
functional
.
conv1d
(
specgram
,
kernel
,
groups
=
specgram
.
shape
[
1
])
/
denom
output
=
torch
.
nn
.
functional
.
conv1d
(
specgram
,
kernel
,
groups
=
specgram
.
shape
[
1
])
/
denom
...
@@ -1240,16 +1336,18 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
...
@@ -1240,16 +1336,18 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
return
output
return
output
def
gain
(
waveform
,
gain_db
=
1.0
):
def
gain
(
# type: (Tensor, float) -> Tensor
waveform
:
Tensor
,
gain_db
:
float
=
1.0
)
->
Tensor
:
r
"""Apply amplification or attenuation to the whole waveform.
r
"""Apply amplification or attenuation to the whole waveform.
Args:
Args:
waveform (
torch.
Tensor): Tensor of audio of dimension (..., time).
waveform (Tensor): Tensor of audio of dimension (..., time).
gain_db (float) Gain adjustment in decibels (dB) (Default: `1.0`).
gain_db (float
, optional
) Gain adjustment in decibels (dB) (Default:
`
`1.0`
`
).
Returns:
Returns:
torch.
Tensor: the whole waveform amplified by gain_db.
Tensor: the whole waveform amplified by gain_db.
"""
"""
if
(
gain_db
==
0
):
if
(
gain_db
==
0
):
return
waveform
return
waveform
...
@@ -1259,7 +1357,10 @@ def gain(waveform, gain_db=1.0):
...
@@ -1259,7 +1357,10 @@ def gain(waveform, gain_db=1.0):
return
waveform
*
ratio
return
waveform
*
ratio
def
_add_noise_shaping
(
dithered_waveform
,
waveform
):
def
_add_noise_shaping
(
dithered_waveform
:
Tensor
,
waveform
:
Tensor
)
->
Tensor
:
r
"""Noise shaping is calculated by error:
r
"""Noise shaping is calculated by error:
error[n] = dithered[n] - original[n]
error[n] = dithered[n] - original[n]
noise_shaped_waveform[n] = dithered[n] + error[n-1]
noise_shaped_waveform[n] = dithered[n] + error[n-1]
...
@@ -1281,8 +1382,10 @@ def _add_noise_shaping(dithered_waveform, waveform):
...
@@ -1281,8 +1382,10 @@ def _add_noise_shaping(dithered_waveform, waveform):
return
noise_shaped
.
view
(
dithered_shape
[:
-
1
]
+
noise_shaped
.
shape
[
-
1
:])
return
noise_shaped
.
view
(
dithered_shape
[:
-
1
]
+
noise_shaped
.
shape
[
-
1
:])
def
_apply_probability_distribution
(
waveform
,
density_function
=
"TPDF"
):
def
_apply_probability_distribution
(
# type: (Tensor, str) -> Tensor
waveform
:
Tensor
,
density_function
:
str
=
"TPDF"
)
->
Tensor
:
r
"""Apply a probability distribution function on a waveform.
r
"""Apply a probability distribution function on a waveform.
Triangular probability density function (TPDF) dither noise has a
Triangular probability density function (TPDF) dither noise has a
...
@@ -1297,14 +1400,14 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
...
@@ -1297,14 +1400,14 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
The relationship of probabilities of results follows a bell-shaped,
The relationship of probabilities of results follows a bell-shaped,
or Gaussian curve, typical of dither generated by analog sources.
or Gaussian curve, typical of dither generated by analog sources.
Args:
Args:
waveform (
torch.
Tensor): Tensor of audio of dimension (..., time)
waveform (Tensor): Tensor of audio of dimension (..., time)
probability_density_function (str
ing
): The density function of a
probability_density_function (str
, optional
): The density function of a
continuous random variable (Default: `TPDF`)
continuous random variable (Default: `
`"
TPDF
"`
`)
Options: Triangular Probability Density Function - `TPDF`
Options: Triangular Probability Density Function - `TPDF`
Rectangular Probability Density Function - `RPDF`
Rectangular Probability Density Function - `RPDF`
Gaussian Probability Density Function - `GPDF`
Gaussian Probability Density Function - `GPDF`
Returns:
Returns:
torch.
Tensor: waveform dithered with TPDF
Tensor: waveform dithered with TPDF
"""
"""
# pack batch
# pack batch
...
@@ -1353,23 +1456,25 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
...
@@ -1353,23 +1456,25 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
return
quantised_signal
.
view
(
shape
[:
-
1
]
+
quantised_signal
.
shape
[
-
1
:])
return
quantised_signal
.
view
(
shape
[:
-
1
]
+
quantised_signal
.
shape
[
-
1
:])
def
dither
(
waveform
,
density_function
=
"TPDF"
,
noise_shaping
=
False
):
def
dither
(
# type: (Tensor, str, bool) -> Tensor
waveform
:
Tensor
,
density_function
:
str
=
"TPDF"
,
noise_shaping
:
bool
=
False
)
->
Tensor
:
r
"""Dither increases the perceived dynamic range of audio stored at a
r
"""Dither increases the perceived dynamic range of audio stored at a
particular bit-depth by eliminating nonlinear truncation distortion
particular bit-depth by eliminating nonlinear truncation distortion
(i.e. adding minimally perceived noise to mask distortion caused by quantization).
(i.e. adding minimally perceived noise to mask distortion caused by quantization).
Args:
Args:
waveform (torch.Tensor): Tensor of audio of dimension (..., time)
waveform (Tensor): Tensor of audio of dimension (..., time)
density_function (string): The density function of a
density_function (str, optional): The density function of a continuous random variable (Default: ``"TPDF"``)
continuous random variable (Default: `TPDF`)
Options: Triangular Probability Density Function - `TPDF`
Options: Triangular Probability Density Function - `TPDF`
Rectangular Probability Density Function - `RPDF`
Rectangular Probability Density Function - `RPDF`
Gaussian Probability Density Function - `GPDF`
Gaussian Probability Density Function - `GPDF`
noise_shaping (bool
ean
): a filtering process that shapes the spectral
noise_shaping (bool
, optional
): a filtering process that shapes the spectral
energy of quantisation error (Default: `False`)
energy of quantisation error (Default:
`
`False`
`
)
Returns:
Returns:
torch.
Tensor: waveform dithered
Tensor: waveform dithered
"""
"""
dithered
=
_apply_probability_distribution
(
waveform
,
density_function
=
density_function
)
dithered
=
_apply_probability_distribution
(
waveform
,
density_function
=
density_function
)
...
@@ -1379,8 +1484,12 @@ def dither(waveform, density_function="TPDF", noise_shaping=False):
...
@@ -1379,8 +1484,12 @@ def dither(waveform, density_function="TPDF", noise_shaping=False):
return
dithered
return
dithered
def
_compute_nccf
(
waveform
,
sample_rate
,
frame_time
,
freq_low
):
def
_compute_nccf
(
# type: (Tensor, int, float, int) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
,
frame_time
:
float
,
freq_low
:
int
)
->
Tensor
:
r
"""
r
"""
Compute Normalized Cross-Correlation Function (NCCF).
Compute Normalized Cross-Correlation Function (NCCF).
...
@@ -1390,7 +1499,7 @@ def _compute_nccf(waveform, sample_rate, frame_time, freq_low):
...
@@ -1390,7 +1499,7 @@ def _compute_nccf(waveform, sample_rate, frame_time, freq_low):
where
where
:math:`\phi_i(m)` is the NCCF at frame :math:`i` with lag :math:`m`,
:math:`\phi_i(m)` is the NCCF at frame :math:`i` with lag :math:`m`,
:math:`w` is the waveform,
:math:`w` is the waveform,
:math:`N` is the leng
h
t of a frame,
:math:`N` is the lengt
h
of a frame,
:math:`b_i` is the beginning of frame :math:`i`,
:math:`b_i` is the beginning of frame :math:`i`,
:math:`E(j)` is the energy :math:`\sum_{n=j}^{j+N-1} w^2(n)`.
:math:`E(j)` is the energy :math:`\sum_{n=j}^{j+N-1} w^2(n)`.
"""
"""
...
@@ -1411,12 +1520,8 @@ def _compute_nccf(waveform, sample_rate, frame_time, freq_low):
...
@@ -1411,12 +1520,8 @@ def _compute_nccf(waveform, sample_rate, frame_time, freq_low):
# Compute lags
# Compute lags
output_lag
=
[]
output_lag
=
[]
for
lag
in
range
(
1
,
lags
+
1
):
for
lag
in
range
(
1
,
lags
+
1
):
s1
=
waveform
[...,
:
-
lag
].
unfold
(
-
1
,
frame_size
,
frame_size
)[
s1
=
waveform
[...,
:
-
lag
].
unfold
(
-
1
,
frame_size
,
frame_size
)[...,
:
num_of_frames
,
:]
...,
:
num_of_frames
,
:
s2
=
waveform
[...,
lag
:].
unfold
(
-
1
,
frame_size
,
frame_size
)[...,
:
num_of_frames
,
:]
]
s2
=
waveform
[...,
lag
:].
unfold
(
-
1
,
frame_size
,
frame_size
)[
...,
:
num_of_frames
,
:
]
output_frames
=
(
output_frames
=
(
(
s1
*
s2
).
sum
(
-
1
)
(
s1
*
s2
).
sum
(
-
1
)
...
@@ -1431,8 +1536,11 @@ def _compute_nccf(waveform, sample_rate, frame_time, freq_low):
...
@@ -1431,8 +1536,11 @@ def _compute_nccf(waveform, sample_rate, frame_time, freq_low):
return
nccf
return
nccf
def
_combine_max
(
a
,
b
,
thresh
=
0.99
):
def
_combine_max
(
# type: (Tuple[Tensor, Tensor], Tuple[Tensor, Tensor], float) -> Tuple[Tensor, Tensor]
a
:
Tuple
[
Tensor
,
Tensor
],
b
:
Tuple
[
Tensor
,
Tensor
],
thresh
:
float
=
0.99
)
->
Tuple
[
Tensor
,
Tensor
]:
"""
"""
Take value from first if bigger than a multiplicative factor of the second, elementwise.
Take value from first if bigger than a multiplicative factor of the second, elementwise.
"""
"""
...
@@ -1442,8 +1550,11 @@ def _combine_max(a, b, thresh=0.99):
...
@@ -1442,8 +1550,11 @@ def _combine_max(a, b, thresh=0.99):
return
values
,
indices
return
values
,
indices
def
_find_max_per_frame
(
nccf
,
sample_rate
,
freq_high
):
def
_find_max_per_frame
(
# type: (Tensor, int, int) -> Tensor
nccf
:
Tensor
,
sample_rate
:
int
,
freq_high
:
int
)
->
Tensor
:
r
"""
r
"""
For each frame, take the highest value of NCCF,
For each frame, take the highest value of NCCF,
apply centered median smoothing, and convert to frequency.
apply centered median smoothing, and convert to frequency.
...
@@ -1472,8 +1583,10 @@ def _find_max_per_frame(nccf, sample_rate, freq_high):
...
@@ -1472,8 +1583,10 @@ def _find_max_per_frame(nccf, sample_rate, freq_high):
return
indices
return
indices
def
_median_smoothing
(
indices
,
win_length
):
def
_median_smoothing
(
# type: (Tensor, int) -> Tensor
indices
:
Tensor
,
win_length
:
int
)
->
Tensor
:
r
"""
r
"""
Apply median smoothing to the 1D tensor over the given window.
Apply median smoothing to the 1D tensor over the given window.
"""
"""
...
@@ -1494,31 +1607,28 @@ def _median_smoothing(indices, win_length):
...
@@ -1494,31 +1607,28 @@ def _median_smoothing(indices, win_length):
def
detect_pitch_frequency
(
def
detect_pitch_frequency
(
waveform
,
waveform
:
Tensor
,
sample_rate
,
sample_rate
:
int
,
frame_time
=
10
**
(
-
2
),
frame_time
:
float
=
10
**
(
-
2
),
win_length
=
30
,
win_length
:
int
=
30
,
freq_low
=
85
,
freq_low
:
int
=
85
,
freq_high
=
3400
,
freq_high
:
int
=
3400
,
):
)
->
Tensor
:
# type: (Tensor, int, float, int, int, int) -> Tensor
r
"""Detect pitch frequency.
r
"""Detect pitch frequency.
It is implemented using normalized cross-correlation function and median smoothing.
It is implemented using normalized cross-correlation function and median smoothing.
Args:
Args:
waveform (
torch.
Tensor): Tensor of audio of dimension (..., freq, time)
waveform (Tensor): Tensor of audio of dimension (..., freq, time)
sample_rate (int): The sample rate of the waveform (Hz)
sample_rate (int): The sample rate of the waveform (Hz)
win_length (int): The window length for median smoothing (in number of frames)
frame_time (float, optional): Duration of a frame (Default: ``10 ** (-2)``).
freq_low (int): Lowest frequency that can be detected (Hz)
win_length (int, optional): The window length for median smoothing (in number of frames) (Default: ``30``).
freq_high (int): Highest frequency that can be detected (Hz)
freq_low (int, optional): Lowest frequency that can be detected (Hz) (Default: ``85``).
freq_high (int, optional): Highest frequency that can be detected (Hz) (Default: ``3400``).
Returns:
Returns:
freq (torch.
Tensor
)
: Tensor of
audio
of dimension (..., frame)
Tensor: Tensor of
freq
of dimension (..., frame)
"""
"""
dim
=
waveform
.
dim
()
# pack batch
# pack batch
shape
=
list
(
waveform
.
size
())
shape
=
list
(
waveform
.
size
())
waveform
=
waveform
.
view
([
-
1
]
+
shape
[
-
1
:])
waveform
=
waveform
.
view
([
-
1
]
+
shape
[
-
1
:])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment