Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
4c221140
Unverified
Commit
4c221140
authored
Mar 31, 2020
by
Tomás Osório
Committed by
GitHub
Mar 31, 2020
Browse files
Add inline typing to functional (#482)
* add typing to functional * fix minor things * fix flake8
parent
a72dd836
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
342 additions
and
232 deletions
+342
-232
torchaudio/functional.py
torchaudio/functional.py
+342
-232
No files found.
torchaudio/functional.py
View file @
4c221140
# -*- coding: utf-8 -*-
import
math
from
typing
import
Optional
,
Tuple
import
torch
from
torch
import
Tensor
__all__
=
[
"istft"
,
...
...
@@ -37,17 +39,16 @@ __all__ = [
# TODO: remove this once https://github.com/pytorch/pytorch/issues/21478 gets solved
@
torch
.
jit
.
ignore
def
_stft
(
waveform
,
n_fft
,
hop_length
,
win_length
,
window
,
center
,
pad_mode
,
normalized
,
onesided
,
):
# type: (Tensor, int, Optional[int], Optional[int], Optional[Tensor], bool, str, bool, bool) -> Tensor
waveform
:
Tensor
,
n_fft
:
int
,
hop_length
:
Optional
[
int
],
win_length
:
Optional
[
int
],
window
:
Optional
[
Tensor
],
center
:
bool
,
pad_mode
:
str
,
normalized
:
bool
,
onesided
:
bool
)
->
Tensor
:
return
torch
.
stft
(
waveform
,
n_fft
,
...
...
@@ -62,18 +63,17 @@ def _stft(
def
istft
(
stft_matrix
,
# type: Tensor
n_fft
,
# type: int
hop_length
=
None
,
# type: Optional[int]
win_length
=
None
,
# type: Optional[int]
window
=
None
,
# type: Optional[Tensor]
center
=
True
,
# type: bool
pad_mode
=
"reflect"
,
# type: str
normalized
=
False
,
# type: bool
onesided
=
True
,
# type: bool
length
=
None
,
# type: Optional[int]
):
# type: (...) -> Tensor
stft_matrix
:
Tensor
,
n_fft
:
int
,
hop_length
:
Optional
[
int
]
=
None
,
win_length
:
Optional
[
int
]
=
None
,
window
:
Optional
[
Tensor
]
=
None
,
center
:
bool
=
True
,
pad_mode
:
str
=
"reflect"
,
normalized
:
bool
=
False
,
onesided
:
bool
=
True
,
length
:
Optional
[
int
]
=
None
,
)
->
Tensor
:
r
"""Inverse short time Fourier Transform. This is expected to be the inverse of torch.stft.
It has the same parameters (+ additional optional parameter of ``length``) and it should return the
least squares estimation of the original signal. The algorithm will check using the NOLA condition (
...
...
@@ -103,26 +103,26 @@ def istft(
IEEE Trans. ASSP, vol.32, no.2, pp.236-243, Apr. 1984.
Args:
stft_matrix (
torch.
Tensor): Output of stft where each row of a channel is a frequency and each
stft_matrix (Tensor): Output of stft where each row of a channel is a frequency and each
column is a window. It has a size of either (..., fft_size, n_frame, 2)
n_fft (int): Size of Fourier transform
hop_length (
O
ptional
[int]
): The distance between neighboring sliding window frames.
hop_length (
int or None, o
ptional): The distance between neighboring sliding window frames.
(Default: ``win_length // 4``)
win_length (
O
ptional
[int]
): The size of window frame and STFT filter. (Default: ``n_fft``)
window (
Optional[torch.Tensor]
): The optional window function.
win_length (
int or None, o
ptional): The size of window frame and STFT filter. (Default: ``n_fft``)
window (
Tensor or None, optional
): The optional window function.
(Default: ``torch.ones(win_length)``)
center (bool): Whether ``input`` was padded on both sides so
center (bool
, optional
): Whether ``input`` was padded on both sides so
that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
(Default: ``True``)
pad_mode (str): Controls the padding method used when ``center`` is True. (Default:
``
'
reflect
'
``)
normalized (bool): Whether the STFT was normalized. (Default: ``False``)
onesided (bool): Whether the STFT is onesided. (Default: ``True``)
length (
O
ptional
[int]
): The amount to trim the signal by (i.e. the
pad_mode (str
, optional
): Controls the padding method used when ``center`` is True. (Default:
``
"
reflect
"
``)
normalized (bool
, optional
): Whether the STFT was normalized. (Default: ``False``)
onesided (bool
, optional
): Whether the STFT is onesided. (Default: ``True``)
length (
int or None, o
ptional): The amount to trim the signal by (i.e. the
original signal length). (Default: whole signal)
Returns:
torch.
Tensor: Least squares estimation of the original signal of size (..., signal_length)
Tensor: Least squares estimation of the original signal of size (..., signal_length)
"""
stft_matrix_dim
=
stft_matrix
.
dim
()
assert
3
<=
stft_matrix_dim
,
"Incorrect stft dimension: %d"
%
(
stft_matrix_dim
)
...
...
@@ -226,26 +226,32 @@ def istft(
def
spectrogram
(
waveform
,
pad
,
window
,
n_fft
,
hop_length
,
win_length
,
power
,
normalized
):
# type: (Tensor, int, Tensor, int, int, int, Optional[float], bool) -> Tensor
waveform
:
Tensor
,
pad
:
int
,
window
:
Tensor
,
n_fft
:
int
,
hop_length
:
int
,
win_length
:
int
,
power
:
Optional
[
float
],
normalized
:
bool
)
->
Tensor
:
r
"""Create a spectrogram or a batch of spectrograms from a raw audio signal.
The spectrogram can be either magnitude-only or complex.
Args:
waveform (
torch.
Tensor): Tensor of audio of dimension (..., time)
waveform (Tensor): Tensor of audio of dimension (..., time)
pad (int): Two sided padding of signal
window (
torch.
Tensor): Window tensor that is applied/multiplied to each frame/window
window (Tensor): Window tensor that is applied/multiplied to each frame/window
n_fft (int): Size of FFT
hop_length (int): Length of hop between STFT windows
win_length (int): Window size
power (float): Exponent for the magnitude spectrogram,
power (float
or None
): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc.
If None, then the complex spectrum is returned instead.
normalized (bool): Whether to normalize by magnitude after stft
Returns:
torch.
Tensor: Dimension (..., freq, time), freq is
Tensor: Dimension (..., freq, time), freq is
``n_fft // 2 + 1`` and ``n_fft`` is the number of
Fourier bins, and time is the number of window hops (n_frame).
"""
...
...
@@ -275,9 +281,18 @@ def spectrogram(
def
griffinlim
(
specgram
,
window
,
n_fft
,
hop_length
,
win_length
,
power
,
normalized
,
n_iter
,
momentum
,
length
,
rand_init
):
# type: (Tensor, Tensor, int, int, int, float, bool, int, float, Optional[int], bool) -> Tensor
specgram
:
Tensor
,
window
:
Tensor
,
n_fft
:
int
,
hop_length
:
int
,
win_length
:
int
,
power
:
float
,
normalized
:
bool
,
n_iter
:
int
,
momentum
:
float
,
length
:
Optional
[
int
],
rand_init
:
bool
)
->
Tensor
:
r
"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation.
Implementation ported from `librosa`.
...
...
@@ -295,22 +310,22 @@ def griffinlim(
IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984.
Args:
specgram (
torch.
Tensor): A magnitude-only STFT spectrogram of dimension (..., freq, frames)
specgram (Tensor): A magnitude-only STFT spectrogram of dimension (..., freq, frames)
where freq is ``n_fft // 2 + 1``.
window (
torch.
Tensor): Window tensor that is applied/multiplied to each frame/window
window (Tensor): Window tensor that is applied/multiplied to each frame/window
n_fft (int): Size of FFT, creates ``n_fft // 2 + 1`` bins
hop_length (int): Length of hop between STFT windows. (
Default: ``win_length // 2``)
win_length (int): Window size. (Default: ``n_fft``)
power (float): Exponent for the magnitude spectrogram,
(must be > 0) e.g., 1 for energy, 2 for power, etc.
(Default: ``2``)
normalized (bool): Whether to normalize by magnitude after stft.
(Default: ``False``)
(must be > 0) e.g., 1 for energy, 2 for power, etc.
normalized (bool): Whether to normalize by magnitude after stft.
n_iter (int): Number of iteration for phase recovery process.
momentum (float): The momentum parameter for fast Griffin-Lim.
Setting this to 0 recovers the original Griffin-Lim method.
Values near 1 can lead to faster convergence, but above 1 may not converge.
(Default: 0.99)
length (
Optional[int]
): Array length of the expected output.
(Default: ``None``)
rand_init (bool): Initializes phase randomly if True, to zero otherwise.
(Default: ``True``)
Values near 1 can lead to faster convergence, but above 1 may not converge.
length (
int or None
): Array length of the expected output.
rand_init (bool): Initializes phase randomly if True, to zero otherwise.
Returns:
torch.Tensor: waveform of (..., time), where time equals the ``length`` parameter if given.
...
...
@@ -331,7 +346,7 @@ def griffinlim(
else
:
angles
=
torch
.
zeros
(
batch
,
freq
,
frames
)
angles
=
torch
.
stack
([
angles
.
cos
(),
angles
.
sin
()],
dim
=-
1
)
\
.
to
(
dtype
=
specgram
.
dtype
,
device
=
specgram
.
device
)
.
to
(
dtype
=
specgram
.
dtype
,
device
=
specgram
.
device
)
specgram
=
specgram
.
unsqueeze
(
-
1
).
expand_as
(
angles
)
# And initialize the previous iterate to 0
...
...
@@ -371,8 +386,13 @@ def griffinlim(
return
waveform
def
amplitude_to_DB
(
x
,
multiplier
,
amin
,
db_multiplier
,
top_db
=
None
):
# type: (Tensor, float, float, float, Optional[float]) -> Tensor
def
amplitude_to_DB
(
x
:
Tensor
,
multiplier
:
float
,
amin
:
float
,
db_multiplier
:
float
,
top_db
:
Optional
[
float
]
=
None
)
->
Tensor
:
r
"""Turn a tensor from the power/amplitude scale to the decibel scale.
This output depends on the maximum value in the input tensor, and so
...
...
@@ -380,15 +400,15 @@ def amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None):
a full clip.
Args:
x (
torch.
Tensor): Input tensor before being converted to decibel scale
x (Tensor): Input tensor before being converted to decibel scale
multiplier (float): Use 10. for power and 20. for amplitude
amin (float): Number to clamp ``x``
db_multiplier (float): Log10(max(reference value and amin))
top_db (
Optional[float]
): Minimum negative cut-off in decibels. A reasonable number
top_db (
float or None, optional
): Minimum negative cut-off in decibels. A reasonable number
is 80. (Default: ``None``)
Returns:
torch.
Tensor: Output tensor in decibel scale
Tensor: Output tensor in decibel scale
"""
x_db
=
multiplier
*
torch
.
log10
(
torch
.
clamp
(
x
,
min
=
amin
))
x_db
-=
multiplier
*
db_multiplier
...
...
@@ -399,23 +419,31 @@ def amplitude_to_DB(x, multiplier, amin, db_multiplier, top_db=None):
return
x_db
def
DB_to_amplitude
(
x
,
ref
,
power
):
# type: (Tensor, float, float) -> Tensor
def
DB_to_amplitude
(
x
:
Tensor
,
ref
:
float
,
power
:
float
)
->
Tensor
:
r
"""Turn a tensor from the decibel scale to the power/amplitude scale.
Args:
x (
torch.
Tensor): Input tensor before being converted to power/amplitude scale.
x (Tensor): Input tensor before being converted to power/amplitude scale.
ref (float): Reference which the output will be scaled by.
power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude.
Returns:
torch.
Tensor: Output tensor in power/amplitude scale.
Tensor: Output tensor in power/amplitude scale.
"""
return
ref
*
torch
.
pow
(
torch
.
pow
(
10.0
,
0.1
*
x
),
power
)
def
create_fb_matrix
(
n_freqs
,
f_min
,
f_max
,
n_mels
,
sample_rate
):
# type: (int, float, float, int, int) -> Tensor
def
create_fb_matrix
(
n_freqs
:
int
,
f_min
:
float
,
f_max
:
float
,
n_mels
:
int
,
sample_rate
:
int
)
->
Tensor
:
r
"""Create a frequency bin conversion matrix.
Args:
...
...
@@ -426,7 +454,7 @@ def create_fb_matrix(n_freqs, f_min, f_max, n_mels, sample_rate):
sample_rate (int): Sample rate of the audio waveform
Returns:
torch.
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
meaning number of frequencies to highlight/apply to x the number of filterbanks.
Each column is a filterbank so that assuming there is a matrix A of
size (..., ``n_freqs``), the applied result would be
...
...
@@ -456,18 +484,21 @@ def create_fb_matrix(n_freqs, f_min, f_max, n_mels, sample_rate):
return
fb
def
create_dct
(
n_mfcc
,
n_mels
,
norm
):
# type: (int, int, Optional[str]) -> Tensor
def
create_dct
(
n_mfcc
:
int
,
n_mels
:
int
,
norm
:
Optional
[
str
]
)
->
Tensor
:
r
"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``),
normalized depending on norm.
Args:
n_mfcc (int): Number of mfc coefficients to retain
n_mels (int): Number of mel filterbanks
norm (
Optional[str]
): Norm to use (either 'ortho' or None)
norm (
str or None
): Norm to use (either 'ortho' or None)
Returns:
torch.
Tensor: The transformation matrix, to be right-multiplied to
Tensor: The transformation matrix, to be right-multiplied to
row-wise data of size (``n_mels``, ``n_mfcc``).
"""
# http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
...
...
@@ -483,8 +514,10 @@ def create_dct(n_mfcc, n_mels, norm):
return
dct
.
t
()
def
mu_law_encoding
(
x
,
quantization_channels
):
# type: (Tensor, int) -> Tensor
def
mu_law_encoding
(
x
:
Tensor
,
quantization_channels
:
int
)
->
Tensor
:
r
"""Encode signal based on mu-law companding. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
...
...
@@ -492,11 +525,11 @@ def mu_law_encoding(x, quantization_channels):
returns a signal encoded with values from 0 to quantization_channels - 1.
Args:
x (
torch.
Tensor): Input tensor
x (Tensor): Input tensor
quantization_channels (int): Number of channels
Returns:
torch.
Tensor: Input after mu-law encoding
Tensor: Input after mu-law encoding
"""
mu
=
quantization_channels
-
1.0
if
not
x
.
is_floating_point
():
...
...
@@ -507,8 +540,10 @@ def mu_law_encoding(x, quantization_channels):
return
x_mu
def
mu_law_decoding
(
x_mu
,
quantization_channels
):
# type: (Tensor, int) -> Tensor
def
mu_law_decoding
(
x_mu
:
Tensor
,
quantization_channels
:
int
)
->
Tensor
:
r
"""Decode mu-law encoded signal. For more info see the
`Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
...
...
@@ -516,11 +551,11 @@ def mu_law_decoding(x_mu, quantization_channels):
and returns a signal scaled between -1 and 1.
Args:
x_mu (
torch.
Tensor): Input tensor
x_mu (Tensor): Input tensor
quantization_channels (int): Number of channels
Returns:
torch.
Tensor: Input after mu-law decoding
Tensor: Input after mu-law decoding
"""
mu
=
quantization_channels
-
1.0
if
not
x_mu
.
is_floating_point
():
...
...
@@ -531,65 +566,71 @@ def mu_law_decoding(x_mu, quantization_channels):
return
x
def
complex_norm
(
complex_tensor
,
power
=
1.0
):
# type: (Tensor, float) -> Tensor
def
complex_norm
(
complex_tensor
:
Tensor
,
power
:
float
=
1.0
)
->
Tensor
:
r
"""Compute the norm of complex tensor input.
Args:
complex_tensor (
torch.
Tensor): Tensor shape of `(..., complex=2)`
complex_tensor (Tensor): Tensor shape of `(..., complex=2)`
power (float): Power of the norm. (Default: `1.0`).
Returns:
torch.
Tensor: Power of the normed input tensor. Shape of `(..., )`
Tensor: Power of the normed input tensor. Shape of `(..., )`
"""
if
power
==
1.0
:
return
torch
.
norm
(
complex_tensor
,
2
,
-
1
)
return
torch
.
norm
(
complex_tensor
,
2
,
-
1
).
pow
(
power
)
def
angle
(
complex_tensor
):
# type: (Tensor) -> Tensor
def
angle
(
complex_tensor
:
Tensor
)
->
Tensor
:
r
"""Compute the angle of complex tensor input.
Args:
complex_tensor (
torch.
Tensor): Tensor shape of `(..., complex=2)`
complex_tensor (Tensor): Tensor shape of `(..., complex=2)`
Return:
torch.
Tensor: Angle of a complex tensor. Shape of `(..., )`
Tensor: Angle of a complex tensor. Shape of `(..., )`
"""
return
torch
.
atan2
(
complex_tensor
[...,
1
],
complex_tensor
[...,
0
])
def
magphase
(
complex_tensor
,
power
=
1.0
):
# type: (Tensor, float) -> Tuple[Tensor, Tensor]
def
magphase
(
complex_tensor
:
Tensor
,
power
:
float
=
1.0
)
->
Tuple
[
Tensor
,
Tensor
]:
r
"""Separate a complex-valued spectrogram with shape `(..., 2)` into its magnitude and phase.
Args:
complex_tensor (
torch.
Tensor): Tensor shape of `(..., complex=2)`
complex_tensor (Tensor): Tensor shape of `(..., complex=2)`
power (float): Power of the norm. (Default: `1.0`)
Returns:
Tuple[torch.
Tensor,
torch.
Tensor
]
: The magnitude and phase of the complex tensor
(
Tensor, Tensor
)
: The magnitude and phase of the complex tensor
"""
mag
=
complex_norm
(
complex_tensor
,
power
)
phase
=
angle
(
complex_tensor
)
return
mag
,
phase
def
phase_vocoder
(
complex_specgrams
,
rate
,
phase_advance
):
# type: (Tensor, float, Tensor) -> Tensor
def
phase_vocoder
(
complex_specgrams
:
Tensor
,
rate
:
float
,
phase_advance
:
Tensor
)
->
Tensor
:
r
"""Given a STFT tensor, speed up in time without modifying pitch by a
factor of ``rate``.
Args:
complex_specgrams (
torch.
Tensor): Dimension of `(..., freq, time, complex=2)`
complex_specgrams (Tensor): Dimension of `(..., freq, time, complex=2)`
rate (float): Speed-up factor
phase_advance (torch.Tensor): Expected phase advance in each bin. Dimension
of (freq, 1)
phase_advance (Tensor): Expected phase advance in each bin. Dimension of (freq, 1)
Returns:
complex_specgrams_stretch (torch.Tensor): Dimension of `(...,
freq, ceil(time/rate), complex=2)`
Tensor: Complex Specgrams Stretch with dimension of `(..., freq, ceil(time/rate), complex=2)`
Example
>>> freq, hop_length = 1025, 512
...
...
@@ -650,22 +691,24 @@ def phase_vocoder(complex_specgrams, rate, phase_advance):
return
complex_specgrams_stretch
def
lfilter
(
waveform
,
a_coeffs
,
b_coeffs
):
# type: (Tensor, Tensor, Tensor) -> Tensor
def
lfilter
(
waveform
:
Tensor
,
a_coeffs
:
Tensor
,
b_coeffs
:
Tensor
)
->
Tensor
:
r
"""Perform an IIR filter by evaluating difference equation.
Args:
waveform (
torch.
Tensor): audio waveform of dimension of `(..., time)`. Must be normalized to -1 to 1.
a_coeffs (
torch.
Tensor): denominator coefficients of difference equation of dimension of `(n_order + 1)`.
waveform (Tensor): audio waveform of dimension of `(..., time)`. Must be normalized to -1 to 1.
a_coeffs (Tensor): denominator coefficients of difference equation of dimension of `(n_order + 1)`.
Lower delays coefficients are first, e.g. `[a0, a1, a2, ...]`.
Must be same size as b_coeffs (pad with 0's as necessary).
b_coeffs (
torch.
Tensor): numerator coefficients of difference equation of dimension of `(n_order + 1)`.
b_coeffs (Tensor): numerator coefficients of difference equation of dimension of `(n_order + 1)`.
Lower delays coefficients are first, e.g. `[b0, b1, b2, ...]`.
Must be same size as a_coeffs (pad with 0's as necessary).
Returns:
output_waveform (torch.Tensor): Dimension of `(..., time)`. Output will be clipped to -1 to 1.
Tensor: Waveform with dimension of `(..., time)`. Output will be clipped to -1 to 1.
"""
dim
=
waveform
.
dim
()
...
...
@@ -674,17 +717,17 @@ def lfilter(waveform, a_coeffs, b_coeffs):
shape
=
waveform
.
size
()
waveform
=
waveform
.
view
(
-
1
,
shape
[
-
1
])
assert
(
a_coeffs
.
size
(
0
)
==
b_coeffs
.
size
(
0
))
assert
(
len
(
waveform
.
size
())
==
2
)
assert
(
waveform
.
device
==
a_coeffs
.
device
)
assert
(
b_coeffs
.
device
==
a_coeffs
.
device
)
assert
(
a_coeffs
.
size
(
0
)
==
b_coeffs
.
size
(
0
))
assert
(
len
(
waveform
.
size
())
==
2
)
assert
(
waveform
.
device
==
a_coeffs
.
device
)
assert
(
b_coeffs
.
device
==
a_coeffs
.
device
)
device
=
waveform
.
device
dtype
=
waveform
.
dtype
n_channel
,
n_sample
=
waveform
.
size
()
n_order
=
a_coeffs
.
size
(
0
)
n_sample_padded
=
n_sample
+
n_order
-
1
assert
(
n_order
>
0
)
assert
(
n_order
>
0
)
# Pad the input and create output
padded_waveform
=
torch
.
zeros
(
n_channel
,
n_sample_padded
,
dtype
=
dtype
,
device
=
device
)
...
...
@@ -720,13 +763,20 @@ def lfilter(waveform, a_coeffs, b_coeffs):
return
output
def
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
):
# type: (Tensor, float, float, float, float, float, float) -> Tensor
def
biquad
(
waveform
:
Tensor
,
b0
:
float
,
b1
:
float
,
b2
:
float
,
a0
:
float
,
a1
:
float
,
a2
:
float
)
->
Tensor
:
r
"""Perform a biquad filter of input tensor. Initial conditions set to 0.
https://en.wikipedia.org/wiki/Digital_biquad_filter
Args:
waveform (
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform (Tensor): audio waveform of dimension of `(..., time)`
b0 (float): numerator coefficient of current input, x[n]
b1 (float): numerator coefficient of input one time step ago x[n-1]
b2 (float): numerator coefficient of input two time steps ago x[n-2]
...
...
@@ -735,7 +785,7 @@ def biquad(waveform, b0, b1, b2, a0, a1, a2):
a2 (float): denominator coefficient of current output y[n-2]
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform with d
imension of `(..., time)`
"""
device
=
waveform
.
device
...
...
@@ -749,23 +799,26 @@ def biquad(waveform, b0, b1, b2, a0, a1, a2):
return
output_waveform
def
_dB2Linear
(
x
):
# type: (float) -> float
def
_dB2Linear
(
x
:
float
)
->
float
:
return
math
.
exp
(
x
*
math
.
log
(
10
)
/
20.0
)
def
highpass_biquad
(
waveform
,
sample_rate
,
cutoff_freq
,
Q
=
0.707
):
# type: (Tensor, int, float, float) -> Tensor
def
highpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
cutoff_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad highpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float): https://en.wikipedia.org/wiki/Q_factor
Q (float
, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform d
imension of `(..., time)`
"""
GAIN
=
1.
...
...
@@ -783,18 +836,22 @@ def highpass_biquad(waveform, sample_rate, cutoff_freq, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
lowpass_biquad
(
waveform
,
sample_rate
,
cutoff_freq
,
Q
=
0.707
):
# type: (Tensor, int, float, float) -> Tensor
def
lowpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
cutoff_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad lowpass filter and perform filtering. Similar to SoX implementation.
Args:
waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
cutoff_freq (float): filter cutoff frequency
Q (float): https://en.wikipedia.org/wiki/Q_factor
Q (float
, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
"""
GAIN
=
1.
...
...
@@ -812,18 +869,22 @@ def lowpass_biquad(waveform, sample_rate, cutoff_freq, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
allpass_biquad
(
waveform
,
sample_rate
,
central_freq
,
Q
=
0.707
):
# type: (Tensor, int, float, float) -> Tensor
def
allpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design two-pole all-pass filter. Similar to SoX implementation.
Args:
waveform(torch.Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
...
...
@@ -841,20 +902,25 @@ def allpass_biquad(waveform, sample_rate, central_freq, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
bandpass_biquad
(
waveform
,
sample_rate
,
central_freq
,
Q
=
0.707
,
const_skirt_gain
=
False
):
# type: (Tensor, int, float, float, bool) -> Tensor
def
bandpass_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
,
const_skirt_gain
:
bool
=
False
)
->
Tensor
:
r
"""Design two-pole band-pass filter. Similar to SoX implementation.
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
const_skirt_gain (bool) : If ``True``, uses a constant skirt gain (peak gain = Q).
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
const_skirt_gain (bool
, optional
) : If ``True``, uses a constant skirt gain (peak gain = Q).
If ``False``, uses a constant 0dB peak gain. (Default: ``False``)
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
...
...
@@ -873,18 +939,22 @@ def bandpass_biquad(waveform, sample_rate, central_freq, Q=0.707, const_skirt_ga
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
bandreject_biquad
(
waveform
,
sample_rate
,
central_freq
,
Q
=
0.707
):
# type: (Tensor, int, float, float) -> Tensor
def
bandreject_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design two-pole band-reject filter. Similar to SoX implementation.
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
...
...
@@ -902,19 +972,24 @@ def bandreject_biquad(waveform, sample_rate, central_freq, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
equalizer_biquad
(
waveform
,
sample_rate
,
center_freq
,
gain
,
Q
=
0.707
):
# type: (Tensor, int, float, float, float) -> Tensor
def
equalizer_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
center_freq
:
float
,
gain
:
float
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design biquad peaking equalizer filter and perform filtering. Similar to SoX implementation.
Args:
waveform (
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform (Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
center_freq (float): filter's central frequency
gain (float): desired gain at the boost (or attenuation) in dB
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``)
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
"""
w0
=
2
*
math
.
pi
*
center_freq
/
sample_rate
A
=
math
.
exp
(
gain
/
40.0
*
math
.
log
(
10
))
...
...
@@ -929,21 +1004,26 @@ def equalizer_biquad(waveform, sample_rate, center_freq, gain, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
band_biquad
(
waveform
,
sample_rate
,
central_freq
,
Q
=
0.707
,
noise
=
False
):
# type: (Tensor, int, float, float, bool) -> Tensor
def
band_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
central_freq
:
float
,
Q
:
float
=
0.707
,
noise
:
bool
=
False
)
->
Tensor
:
r
"""Design two-pole band filter. Similar to SoX implementation.
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
central_freq (float): central frequency (in Hz)
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
noise (bool) : If ``True``, uses the alternate mode for un-pitched audio (e.g. percussion).
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``).
noise (bool
, optional
) : If ``True``, uses the alternate mode for un-pitched audio (e.g. percussion).
If ``False``, uses mode oriented to pitched audio, i.e. voice, singing,
or instrumental music
.
(Default: ``False``)
or instrumental music (Default: ``False``)
.
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
...
...
@@ -969,19 +1049,24 @@ def band_biquad(waveform, sample_rate, central_freq, Q=0.707, noise=False):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
treble_biquad
(
waveform
,
sample_rate
,
gain
,
central_freq
=
3000
,
Q
=
0.707
):
# type: (Tensor, int, float, float, float) -> Tensor
def
treble_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
,
gain
:
float
,
central_freq
:
float
=
3000
,
Q
:
float
=
0.707
)
->
Tensor
:
r
"""Design a treble tone-control effect. Similar to SoX implementation.
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
gain (float): desired gain at the boost (or attenuation) in dB.
central_freq (float): central frequency (in Hz). (Default: ``3000``)
q_factor (float
): https://en.wikipedia.org/wiki/Q_factor
central_freq (float
, optional
): central frequency (in Hz). (Default: ``3000``)
Q (float, optional
): https://en.wikipedia.org/wiki/Q_factor
(Default: ``0.707``).
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
...
...
@@ -1005,16 +1090,18 @@ def treble_biquad(waveform, sample_rate, gain, central_freq=3000, Q=0.707):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
deemph_biquad
(
waveform
,
sample_rate
):
# type: (Tensor, int) -> Tensor
def
deemph_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
)
->
Tensor
:
r
"""Apply ISO 908 CD de-emphasis (shelving) IIR filter. Similar to SoX implementation.
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, Allowed sample rate ``44100`` or ``48000``
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
...
...
@@ -1050,17 +1137,19 @@ def deemph_biquad(waveform, sample_rate):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
riaa_biquad
(
waveform
,
sample_rate
):
# type: (Tensor, int) -> Tensor
def
riaa_biquad
(
waveform
:
Tensor
,
sample_rate
:
int
)
->
Tensor
:
r
"""Apply RIAA vinyl playback equalisation. Similar to SoX implementation.
Args:
waveform(
torch.
Tensor): audio waveform of dimension of `(..., time)`
waveform
(Tensor): audio waveform of dimension of `(..., time)`
sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz).
Allowed sample rates in Hz : ``44100``,``48000``,``88200``,``96000``
Returns:
output_waveform (torch.Tensor): D
imension of `(..., time)`
Tensor: Waveform of d
imension of `(..., time)`
References:
http://sox.sourceforge.net/sox.html
...
...
@@ -1102,7 +1191,7 @@ def riaa_biquad(waveform, sample_rate):
a_re
=
a0
+
a1
*
math
.
cos
(
-
y
)
+
a2
*
math
.
cos
(
-
2
*
y
)
b_im
=
b1
*
math
.
sin
(
-
y
)
+
b2
*
math
.
sin
(
-
2
*
y
)
a_im
=
a1
*
math
.
sin
(
-
y
)
+
a2
*
math
.
sin
(
-
2
*
y
)
g
=
1
/
math
.
sqrt
((
b_re
**
2
+
b_im
**
2
)
/
(
a_re
**
2
+
a_im
**
2
))
g
=
1
/
math
.
sqrt
((
b_re
**
2
+
b_im
**
2
)
/
(
a_re
**
2
+
a_im
**
2
))
b0
*=
g
b1
*=
g
...
...
@@ -1111,8 +1200,12 @@ def riaa_biquad(waveform, sample_rate):
return
biquad
(
waveform
,
b0
,
b1
,
b2
,
a0
,
a1
,
a2
)
def
mask_along_axis_iid
(
specgrams
,
mask_param
,
mask_value
,
axis
):
# type: (Tensor, int, float, int) -> Tensor
def
mask_along_axis_iid
(
specgrams
:
Tensor
,
mask_param
:
int
,
mask_value
:
float
,
axis
:
int
)
->
Tensor
:
r
"""
Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where
``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``.
...
...
@@ -1125,7 +1218,7 @@ def mask_along_axis_iid(specgrams, mask_param, mask_value, axis):
axis (int): Axis to apply masking on (2 -> frequency, 3 -> time)
Returns:
torch.
Tensor: Masked spectrograms of dimensions (batch, channel, freq, time)
Tensor: Masked spectrograms of dimensions (batch, channel, freq, time)
"""
if
axis
!=
2
and
axis
!=
3
:
...
...
@@ -1147,8 +1240,12 @@ def mask_along_axis_iid(specgrams, mask_param, mask_value, axis):
return
specgrams
def
mask_along_axis
(
specgram
,
mask_param
,
mask_value
,
axis
):
# type: (Tensor, int, float, int) -> Tensor
def
mask_along_axis
(
specgram
:
Tensor
,
mask_param
:
int
,
mask_value
:
float
,
axis
:
int
)
->
Tensor
:
r
"""
Apply a mask along ``axis``. Mask will be applied from indices ``[v_0, v_0 + v)``, where
``v`` is sampled from ``uniform(0, mask_param)``, and ``v_0`` from ``uniform(0, max_v - v)``.
...
...
@@ -1161,7 +1258,7 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
axis (int): Axis to apply masking on (1 -> frequency, 2 -> time)
Returns:
torch.
Tensor: Masked spectrogram of dimensions (channel, freq, time)
Tensor: Masked spectrogram of dimensions (channel, freq, time)
"""
# pack batch
...
...
@@ -1188,8 +1285,11 @@ def mask_along_axis(specgram, mask_param, mask_value, axis):
return
specgram
def
compute_deltas
(
specgram
,
win_length
=
5
,
mode
=
"replicate"
):
# type: (Tensor, int, str) -> Tensor
def
compute_deltas
(
specgram
:
Tensor
,
win_length
:
int
=
5
,
mode
:
str
=
"replicate"
)
->
Tensor
:
r
"""Compute delta coefficients of a tensor, usually a spectrogram:
.. math::
...
...
@@ -1200,12 +1300,12 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
:math:`N` is (`win_length`-1)//2.
Args:
specgram (
torch.
Tensor): Tensor of audio of dimension (..., freq, time)
win_length (int): The window length used for computing delta
mode (str): Mode parameter passed to padding
specgram (Tensor): Tensor of audio of dimension (..., freq, time)
win_length (int
, optional
): The window length used for computing delta
(Default: ``5``)
mode (str
, optional
): Mode parameter passed to padding
(Default: ``"replicate"``)
Returns:
deltas (torch.
Tensor
)
: Tensor of
audio
of dimension (..., freq, time)
Tensor: Tensor of
deltas
of dimension (..., freq, time)
Example
>>> specgram = torch.randn(1, 40, 1000)
...
...
@@ -1226,11 +1326,7 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
specgram
=
torch
.
nn
.
functional
.
pad
(
specgram
,
(
n
,
n
),
mode
=
mode
)
kernel
=
(
torch
.
arange
(
-
n
,
n
+
1
,
1
,
device
=
specgram
.
device
,
dtype
=
specgram
.
dtype
)
.
repeat
(
specgram
.
shape
[
1
],
1
,
1
)
)
kernel
=
(
torch
.
arange
(
-
n
,
n
+
1
,
1
,
device
=
specgram
.
device
,
dtype
=
specgram
.
dtype
).
repeat
(
specgram
.
shape
[
1
],
1
,
1
))
output
=
torch
.
nn
.
functional
.
conv1d
(
specgram
,
kernel
,
groups
=
specgram
.
shape
[
1
])
/
denom
...
...
@@ -1240,16 +1336,18 @@ def compute_deltas(specgram, win_length=5, mode="replicate"):
return
output
def
gain
(
waveform
,
gain_db
=
1.0
):
# type: (Tensor, float) -> Tensor
def
gain
(
waveform
:
Tensor
,
gain_db
:
float
=
1.0
)
->
Tensor
:
r
"""Apply amplification or attenuation to the whole waveform.
Args:
waveform (
torch.
Tensor): Tensor of audio of dimension (..., time).
gain_db (float) Gain adjustment in decibels (dB) (Default: `1.0`).
waveform (Tensor): Tensor of audio of dimension (..., time).
gain_db (float
, optional
) Gain adjustment in decibels (dB) (Default:
`
`1.0`
`
).
Returns:
torch.
Tensor: the whole waveform amplified by gain_db.
Tensor: the whole waveform amplified by gain_db.
"""
if
(
gain_db
==
0
):
return
waveform
...
...
@@ -1259,7 +1357,10 @@ def gain(waveform, gain_db=1.0):
return
waveform
*
ratio
def
_add_noise_shaping
(
dithered_waveform
,
waveform
):
def
_add_noise_shaping
(
dithered_waveform
:
Tensor
,
waveform
:
Tensor
)
->
Tensor
:
r
"""Noise shaping is calculated by error:
error[n] = dithered[n] - original[n]
noise_shaped_waveform[n] = dithered[n] + error[n-1]
...
...
@@ -1281,8 +1382,10 @@ def _add_noise_shaping(dithered_waveform, waveform):
return
noise_shaped
.
view
(
dithered_shape
[:
-
1
]
+
noise_shaped
.
shape
[
-
1
:])
def
_apply_probability_distribution
(
waveform
,
density_function
=
"TPDF"
):
# type: (Tensor, str) -> Tensor
def
_apply_probability_distribution
(
waveform
:
Tensor
,
density_function
:
str
=
"TPDF"
)
->
Tensor
:
r
"""Apply a probability distribution function on a waveform.
Triangular probability density function (TPDF) dither noise has a
...
...
@@ -1297,14 +1400,14 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
The relationship of probabilities of results follows a bell-shaped,
or Gaussian curve, typical of dither generated by analog sources.
Args:
waveform (
torch.
Tensor): Tensor of audio of dimension (..., time)
probability_density_function (str
ing
): The density function of a
continuous random variable (Default: `TPDF`)
waveform (Tensor): Tensor of audio of dimension (..., time)
probability_density_function (str
, optional
): The density function of a
continuous random variable (Default: `
`"
TPDF
"`
`)
Options: Triangular Probability Density Function - `TPDF`
Rectangular Probability Density Function - `RPDF`
Gaussian Probability Density Function - `GPDF`
Returns:
torch.
Tensor: waveform dithered with TPDF
Tensor: waveform dithered with TPDF
"""
# pack batch
...
...
@@ -1353,23 +1456,25 @@ def _apply_probability_distribution(waveform, density_function="TPDF"):
return
quantised_signal
.
view
(
shape
[:
-
1
]
+
quantised_signal
.
shape
[
-
1
:])
def
dither
(
waveform
,
density_function
=
"TPDF"
,
noise_shaping
=
False
):
# type: (Tensor, str, bool) -> Tensor
def
dither
(
waveform
:
Tensor
,
density_function
:
str
=
"TPDF"
,
noise_shaping
:
bool
=
False
)
->
Tensor
:
r
"""Dither increases the perceived dynamic range of audio stored at a
particular bit-depth by eliminating nonlinear truncation distortion
(i.e. adding minimally perceived noise to mask distortion caused by quantization).
Args:
waveform (torch.Tensor): Tensor of audio of dimension (..., time)
density_function (string): The density function of a
continuous random variable (Default: `TPDF`)
waveform (Tensor): Tensor of audio of dimension (..., time)
density_function (str, optional): The density function of a continuous random variable (Default: ``"TPDF"``)
Options: Triangular Probability Density Function - `TPDF`
Rectangular Probability Density Function - `RPDF`
Gaussian Probability Density Function - `GPDF`
noise_shaping (bool
ean
): a filtering process that shapes the spectral
energy of quantisation error (Default: `False`)
noise_shaping (bool
, optional
): a filtering process that shapes the spectral
energy of quantisation error (Default:
`
`False`
`
)
Returns:
torch.
Tensor: waveform dithered
Tensor: waveform dithered
"""
dithered
=
_apply_probability_distribution
(
waveform
,
density_function
=
density_function
)
...
...
@@ -1379,8 +1484,12 @@ def dither(waveform, density_function="TPDF", noise_shaping=False):
return
dithered
def
_compute_nccf
(
waveform
,
sample_rate
,
frame_time
,
freq_low
):
# type: (Tensor, int, float, int) -> Tensor
def
_compute_nccf
(
waveform
:
Tensor
,
sample_rate
:
int
,
frame_time
:
float
,
freq_low
:
int
)
->
Tensor
:
r
"""
Compute Normalized Cross-Correlation Function (NCCF).
...
...
@@ -1390,7 +1499,7 @@ def _compute_nccf(waveform, sample_rate, frame_time, freq_low):
where
:math:`\phi_i(m)` is the NCCF at frame :math:`i` with lag :math:`m`,
:math:`w` is the waveform,
:math:`N` is the leng
h
t of a frame,
:math:`N` is the lengt
h
of a frame,
:math:`b_i` is the beginning of frame :math:`i`,
:math:`E(j)` is the energy :math:`\sum_{n=j}^{j+N-1} w^2(n)`.
"""
...
...
@@ -1411,12 +1520,8 @@ def _compute_nccf(waveform, sample_rate, frame_time, freq_low):
# Compute lags
output_lag
=
[]
for
lag
in
range
(
1
,
lags
+
1
):
s1
=
waveform
[...,
:
-
lag
].
unfold
(
-
1
,
frame_size
,
frame_size
)[
...,
:
num_of_frames
,
:
]
s2
=
waveform
[...,
lag
:].
unfold
(
-
1
,
frame_size
,
frame_size
)[
...,
:
num_of_frames
,
:
]
s1
=
waveform
[...,
:
-
lag
].
unfold
(
-
1
,
frame_size
,
frame_size
)[...,
:
num_of_frames
,
:]
s2
=
waveform
[...,
lag
:].
unfold
(
-
1
,
frame_size
,
frame_size
)[...,
:
num_of_frames
,
:]
output_frames
=
(
(
s1
*
s2
).
sum
(
-
1
)
...
...
@@ -1431,8 +1536,11 @@ def _compute_nccf(waveform, sample_rate, frame_time, freq_low):
return
nccf
def
_combine_max
(
a
,
b
,
thresh
=
0.99
):
# type: (Tuple[Tensor, Tensor], Tuple[Tensor, Tensor], float) -> Tuple[Tensor, Tensor]
def
_combine_max
(
a
:
Tuple
[
Tensor
,
Tensor
],
b
:
Tuple
[
Tensor
,
Tensor
],
thresh
:
float
=
0.99
)
->
Tuple
[
Tensor
,
Tensor
]:
"""
Take value from first if bigger than a multiplicative factor of the second, elementwise.
"""
...
...
@@ -1442,8 +1550,11 @@ def _combine_max(a, b, thresh=0.99):
return
values
,
indices
def
_find_max_per_frame
(
nccf
,
sample_rate
,
freq_high
):
# type: (Tensor, int, int) -> Tensor
def
_find_max_per_frame
(
nccf
:
Tensor
,
sample_rate
:
int
,
freq_high
:
int
)
->
Tensor
:
r
"""
For each frame, take the highest value of NCCF,
apply centered median smoothing, and convert to frequency.
...
...
@@ -1472,8 +1583,10 @@ def _find_max_per_frame(nccf, sample_rate, freq_high):
return
indices
def
_median_smoothing
(
indices
,
win_length
):
# type: (Tensor, int) -> Tensor
def
_median_smoothing
(
indices
:
Tensor
,
win_length
:
int
)
->
Tensor
:
r
"""
Apply median smoothing to the 1D tensor over the given window.
"""
...
...
@@ -1494,31 +1607,28 @@ def _median_smoothing(indices, win_length):
def
detect_pitch_frequency
(
waveform
,
sample_rate
,
frame_time
=
10
**
(
-
2
),
win_length
=
30
,
freq_low
=
85
,
freq_high
=
3400
,
):
# type: (Tensor, int, float, int, int, int) -> Tensor
waveform
:
Tensor
,
sample_rate
:
int
,
frame_time
:
float
=
10
**
(
-
2
),
win_length
:
int
=
30
,
freq_low
:
int
=
85
,
freq_high
:
int
=
3400
,
)
->
Tensor
:
r
"""Detect pitch frequency.
It is implemented using normalized cross-correlation function and median smoothing.
Args:
waveform (
torch.
Tensor): Tensor of audio of dimension (..., freq, time)
waveform (Tensor): Tensor of audio of dimension (..., freq, time)
sample_rate (int): The sample rate of the waveform (Hz)
win_length (int): The window length for median smoothing (in number of frames)
freq_low (int): Lowest frequency that can be detected (Hz)
freq_high (int): Highest frequency that can be detected (Hz)
frame_time (float, optional): Duration of a frame (Default: ``10 ** (-2)``).
win_length (int, optional): The window length for median smoothing (in number of frames) (Default: ``30``).
freq_low (int, optional): Lowest frequency that can be detected (Hz) (Default: ``85``).
freq_high (int, optional): Highest frequency that can be detected (Hz) (Default: ``3400``).
Returns:
freq (torch.
Tensor
)
: Tensor of
audio
of dimension (..., frame)
Tensor: Tensor of
freq
of dimension (..., frame)
"""
dim
=
waveform
.
dim
()
# pack batch
shape
=
list
(
waveform
.
size
())
waveform
=
waveform
.
view
([
-
1
]
+
shape
[
-
1
:])
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment