Unverified Commit 4318fc5c authored by jimchen90's avatar jimchen90 Committed by GitHub
Browse files

Add MelResNet Block (#705)



* Add MelResNet Block

* add default value

* update model and test

* rebase and small changes

* add pad variable

* update format

* update reference in docstrings

* add underscore name
Co-authored-by: default avatarJi Chen <jimchen90@devfair0160.h2.fair>
parent ab733e7b
import torch import torch
from torchaudio.models import Wav2Letter from torchaudio.models import Wav2Letter, _MelResNet
class TestWav2Letter: class TestWav2Letter:
...@@ -29,3 +29,23 @@ class TestWav2Letter: ...@@ -29,3 +29,23 @@ class TestWav2Letter:
out = model(x) out = model(x)
assert out.size() == (batch_size, num_classes, 2) assert out.size() == (batch_size, num_classes, 2)
class TestMelResNet:
def test_waveform(self):
batch_size = 2
num_features = 200
input_dims = 100
output_dims = 128
res_blocks = 10
hidden_dims = 128
pad = 2
model = _MelResNet(res_blocks, input_dims, hidden_dims, output_dims, pad)
x = torch.rand(batch_size, input_dims, num_features)
out = model(x)
assert out.size() == (batch_size, output_dims, num_features - pad * 2)
from .wav2letter import * from .wav2letter import *
from ._wavernn import *
from typing import Optional
from torch import Tensor
from torch import nn
__all__ = ["_ResBlock", "_MelResNet"]
class _ResBlock(nn.Module):
r"""This is a ResNet block layer. This layer is based on the paper "Deep Residual Learning
for Image Recognition". Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. CVPR, 2016.
It is a block used in WaveRNN. WaveRNN is based on the paper "Efficient Neural Audio Synthesis".
Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lockhart,
Florian Stimberg, Aaron van den Oord, Sander Dieleman, Koray Kavukcuoglu. arXiv:1802.08435, 2018.
Args:
num_dims: the number of compute dimensions in the input (default=128).
Examples::
>>> resblock = _ResBlock(num_dims=128)
>>> input = torch.rand(10, 128, 512)
>>> output = resblock(input)
"""
def __init__(self, num_dims: int = 128) -> None:
super().__init__()
self.resblock_model = nn.Sequential(
nn.Conv1d(in_channels=num_dims, out_channels=num_dims, kernel_size=1, bias=False),
nn.BatchNorm1d(num_dims),
nn.ReLU(inplace=True),
nn.Conv1d(in_channels=num_dims, out_channels=num_dims, kernel_size=1, bias=False),
nn.BatchNorm1d(num_dims)
)
def forward(self, x: Tensor) -> Tensor:
r"""Pass the input through the _ResBlock layer.
Args:
x: the input sequence to the _ResBlock layer (required).
Shape:
- x: :math:`(N, S, T)`.
- output: :math:`(N, S, T)`.
where N is the batch size, S is the number of input sequence,
T is the length of input sequence.
"""
residual = x
return self.resblock_model(x) + residual
class _MelResNet(nn.Module):
r"""This is a MelResNet layer based on a stack of ResBlocks. It is a block used in WaveRNN.
WaveRNN is based on the paper "Efficient Neural Audio Synthesis". Nal Kalchbrenner, Erich Elsen,
Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lockhart, Florian Stimberg, Aaron van den Oord,
Sander Dieleman, Koray Kavukcuoglu. arXiv:1802.08435, 2018.
Args:
res_blocks: the number of ResBlock in stack (default=10).
input_dims: the number of input sequence (default=100).
hidden_dims: the number of compute dimensions (default=128).
output_dims: the number of output sequence (default=128).
pad: the number of kernal size (pad * 2 + 1) in the first Conv1d layer (default=2).
Examples::
>>> melresnet = _MelResNet(res_blocks=10, input_dims=100,
hidden_dims=128, output_dims=128, pad=2)
>>> input = torch.rand(10, 100, 512)
>>> output = melresnet(input)
"""
def __init__(self, res_blocks: int = 10,
input_dims: int = 100,
hidden_dims: int = 128,
output_dims: int = 128,
pad: int = 2) -> None:
super().__init__()
kernel_size = pad * 2 + 1
ResBlocks = []
for i in range(res_blocks):
ResBlocks.append(_ResBlock(hidden_dims))
self.melresnet_model = nn.Sequential(
nn.Conv1d(in_channels=input_dims, out_channels=hidden_dims, kernel_size=kernel_size, bias=False),
nn.BatchNorm1d(hidden_dims),
nn.ReLU(inplace=True),
*ResBlocks,
nn.Conv1d(in_channels=hidden_dims, out_channels=output_dims, kernel_size=1)
)
def forward(self, x: Tensor) -> Tensor:
r"""Pass the input through the _MelResNet layer.
Args:
x: the input sequence to the _MelResNet layer (required).
Shape:
- x: :math:`(N, S, T)`.
- output: :math:`(N, P, T-2*pad)`.
where N is the batch size, S is the number of input sequence,
P is the number of ouput sequence, T is the length of input sequence.
"""
return self.melresnet_model(x)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment