Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
33a655fd
Unverified
Commit
33a655fd
authored
Oct 07, 2021
by
Caroline Chen
Committed by
GitHub
Oct 07, 2021
Browse files
Update RNNT Loss docs and add example (#1835)
parent
274ada80
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
26 additions
and
9 deletions
+26
-9
torchaudio/functional/functional.py
torchaudio/functional/functional.py
+5
-5
torchaudio/transforms.py
torchaudio/transforms.py
+21
-4
No files found.
torchaudio/functional/functional.py
View file @
33a655fd
...
@@ -1764,17 +1764,17 @@ def rnnt_loss(
...
@@ -1764,17 +1764,17 @@ def rnnt_loss(
dependencies.
dependencies.
Args:
Args:
logits (Tensor): Tensor of dimension (batch, max seq length, max target length + 1, class)
logits (Tensor): Tensor of dimension
`
(batch, max seq length, max target length + 1, class)
`
containing output from joiner
containing output from joiner
targets (Tensor): Tensor of dimension (batch, max target length) containing targets with zero padded
targets (Tensor): Tensor of dimension
`
(batch, max target length)
`
containing targets with zero padded
logit_lengths (Tensor): Tensor of dimension (batch) containing lengths of each sequence from encoder
logit_lengths (Tensor): Tensor of dimension
`
(batch)
`
containing lengths of each sequence from encoder
target_lengths (Tensor): Tensor of dimension (batch) containing lengths of targets for each sequence
target_lengths (Tensor): Tensor of dimension
`
(batch)
`
containing lengths of targets for each sequence
blank (int, optional): blank label (Default: ``-1``)
blank (int, optional): blank label (Default: ``-1``)
clamp (float, optional): clamp for gradients (Default: ``-1``)
clamp (float, optional): clamp for gradients (Default: ``-1``)
reduction (string, optional): Specifies the reduction to apply to the output:
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. (Default: ``'mean'``)
``'none'`` | ``'mean'`` | ``'sum'``. (Default: ``'mean'``)
Returns:
Returns:
Tensor: Loss with the reduction option applied. If ``reduction`` is ``'none'``, then size (batch),
Tensor: Loss with the reduction option applied. If ``reduction`` is ``'none'``, then size
`
(batch)
`
,
otherwise scalar.
otherwise scalar.
"""
"""
if
reduction
not
in
[
'none'
,
'mean'
,
'sum'
]:
if
reduction
not
in
[
'none'
,
'mean'
,
'sum'
]:
...
...
torchaudio/transforms.py
View file @
33a655fd
...
@@ -1450,6 +1450,23 @@ class RNNTLoss(torch.nn.Module):
...
@@ -1450,6 +1450,23 @@ class RNNTLoss(torch.nn.Module):
clamp (float, optional): clamp for gradients (Default: ``-1``)
clamp (float, optional): clamp for gradients (Default: ``-1``)
reduction (string, optional): Specifies the reduction to apply to the output:
reduction (string, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. (Default: ``'mean'``)
``'none'`` | ``'mean'`` | ``'sum'``. (Default: ``'mean'``)
Example
>>> # Hypothetical values
>>> logits = torch.tensor([[[[0.1, 0.6, 0.1, 0.1, 0.1],
>>> [0.1, 0.1, 0.6, 0.1, 0.1],
>>> [0.1, 0.1, 0.2, 0.8, 0.1]],
>>> [[0.1, 0.6, 0.1, 0.1, 0.1],
>>> [0.1, 0.1, 0.2, 0.1, 0.1],
>>> [0.7, 0.1, 0.2, 0.1, 0.1]]]],
>>> dtype=torch.float32,
>>> requires_grad=True)
>>> targets = torch.tensor([[1, 2]], dtype=torch.int)
>>> logit_lengths = torch.tensor([2], dtype=torch.int)
>>> target_lengths = torch.tensor([2], dtype=torch.int)
>>> transform = transforms.RNNTLoss(blank=0)
>>> loss = transform(logits, targets, logit_lengths, target_lengths)
>>> loss.backward()
"""
"""
def
__init__
(
def
__init__
(
...
@@ -1472,11 +1489,11 @@ class RNNTLoss(torch.nn.Module):
...
@@ -1472,11 +1489,11 @@ class RNNTLoss(torch.nn.Module):
):
):
"""
"""
Args:
Args:
logits (Tensor): Tensor of dimension (batch, max seq length, max target length + 1, class)
logits (Tensor): Tensor of dimension
`
(batch, max seq length, max target length + 1, class)
`
containing output from joiner
containing output from joiner
targets (Tensor): Tensor of dimension (batch, max target length) containing targets with zero padded
targets (Tensor): Tensor of dimension
`
(batch, max target length)
`
containing targets with zero padded
logit_lengths (Tensor): Tensor of dimension (batch) containing lengths of each sequence from encoder
logit_lengths (Tensor): Tensor of dimension
`
(batch)
`
containing lengths of each sequence from encoder
target_lengths (Tensor): Tensor of dimension (batch) containing lengths of targets for each sequence
target_lengths (Tensor): Tensor of dimension
`
(batch)
`
containing lengths of targets for each sequence
Returns:
Returns:
Tensor: Loss with the reduction option applied. If ``reduction`` is ``'none'``, then size (batch),
Tensor: Loss with the reduction option applied. If ``reduction`` is ``'none'``, then size (batch),
otherwise scalar.
otherwise scalar.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment