Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Torchaudio
Commits
01764dee
Commit
01764dee
authored
Oct 07, 2021
by
moto
Browse files
Add license to pre-trained model doc (#1836)
parent
a43cee71
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
89 additions
and
65 deletions
+89
-65
torchaudio/models/wav2vec2/pretrained.py
torchaudio/models/wav2vec2/pretrained.py
+89
-65
No files found.
torchaudio/models/wav2vec2/pretrained.py
View file @
01764dee
...
@@ -159,9 +159,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -159,9 +159,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`].
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_BASE_10M
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_BASE_10M
=
Wav2Vec2PretrainedModelBundle
(
_path
=
'wav2vec2_fairseq_base_ls960_asr_ll10m.pth'
,
_path
=
'wav2vec2_fairseq_base_ls960_asr_ll10m.pth'
,
...
@@ -200,10 +202,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -200,10 +202,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
fine-tuned for ASR on 10 minutes of transcribed audio from *Libri-Light* dataset
fine-tuned for ASR on 10 minutes of transcribed audio from *Libri-Light* dataset
[:footcite:`librilight`] ("train-10min" subset).
[:footcite:`librilight`] ("train-10min" subset).
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_BASE_100H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_BASE_100H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_base_ls960_asr_ls100.pth'
,
'wav2vec2_fairseq_base_ls960_asr_ls100.pth'
,
...
@@ -242,10 +245,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -242,10 +245,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
fine-tuned for ASR on 100 hours of transcribed audio from "train-clean-100" subset.
fine-tuned for ASR on 100 hours of transcribed audio from "train-clean-100" subset.
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_BASE_960H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_BASE_960H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_base_ls960_asr_ls960.pth'
,
'wav2vec2_fairseq_base_ls960_asr_ls960.pth'
,
...
@@ -283,10 +287,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -283,10 +287,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
fine-tuned for ASR on the same audio with the corresponding transcripts.
fine-tuned for ASR on the same audio with the corresponding transcripts.
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_LARGE
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_LARGE
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_ls960.pth'
,
'wav2vec2_fairseq_large_ls960.pth'
,
...
@@ -324,10 +329,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -324,10 +329,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_10M
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_10M
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_ls960_asr_ll10m.pth'
,
'wav2vec2_fairseq_large_ls960_asr_ll10m.pth'
,
...
@@ -366,10 +372,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -366,10 +372,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
fine-tuned for ASR on 10 minutes of transcribed audio from *Libri-Light* dataset
fine-tuned for ASR on 10 minutes of transcribed audio from *Libri-Light* dataset
[:footcite:`librilight`] ("train-10min" subset).
[:footcite:`librilight`] ("train-10min" subset).
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_100H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_100H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_ls960_asr_ls100.pth'
,
'wav2vec2_fairseq_large_ls960_asr_ls100.pth'
,
...
@@ -408,10 +415,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -408,10 +415,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
fine-tuned for ASR on 100 hours of transcribed audio from
fine-tuned for ASR on 100 hours of transcribed audio from
the same dataset ("train-clean-100" subset).
the same dataset ("train-clean-100" subset).
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_960H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_960H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_ls960_asr_ls960.pth'
,
'wav2vec2_fairseq_large_ls960_asr_ls960.pth'
,
...
@@ -449,10 +457,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -449,10 +457,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
(the combination of "train-clean-100", "train-clean-360", and "train-other-500"), and
fine-tuned for ASR on the same audio with the corresponding transcripts.
fine-tuned for ASR on the same audio with the corresponding transcripts.
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_LARGE_LV60K
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_LARGE_LV60K
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_lv60k.pth'
,
'wav2vec2_fairseq_large_lv60k.pth'
,
...
@@ -490,10 +499,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
...
@@ -490,10 +499,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
*Libri-Light* dataset [:footcite:`librilight`].
*Libri-Light* dataset [:footcite:`librilight`].
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_LV60K_10M
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_LV60K_10M
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_lv60k_asr_ll10m.pth'
,
'wav2vec2_fairseq_large_lv60k_asr_ll10m.pth'
,
...
@@ -532,10 +542,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
...
@@ -532,10 +542,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
fine-tuned for ASR on 10 minutes of transcribed audio from
fine-tuned for ASR on 10 minutes of transcribed audio from
the same dataset ("train-10min" subset).
the same dataset ("train-10min" subset).
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_LV60K_100H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_LV60K_100H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_lv60k_asr_ls100.pth'
,
'wav2vec2_fairseq_large_lv60k_asr_ls100.pth'
,
...
@@ -574,10 +585,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
...
@@ -574,10 +585,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
fine-tuned for ASR on 100 hours of transcribed audio from
fine-tuned for ASR on 100 hours of transcribed audio from
*LibriSpeech* dataset [:footcite:`7178964`] ("train-clean-100" subset).
*LibriSpeech* dataset [:footcite:`7178964`] ("train-clean-100" subset).
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_ASR_LARGE_LV60K_960H
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_ASR_LARGE_LV60K_960H
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_lv60k_asr_ls960.pth'
,
'wav2vec2_fairseq_large_lv60k_asr_ls960.pth'
,
...
@@ -617,10 +629,11 @@ fine-tuned for ASR on 960 hours of transcribed audio from
...
@@ -617,10 +629,11 @@ fine-tuned for ASR on 960 hours of transcribed audio from
*LibriSpeech* dataset [:footcite:`7178964`]
*LibriSpeech* dataset [:footcite:`7178964`]
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Originally published by the authors of *wav2vec 2.0*
Originally published by the authors of *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] under MIT License and
[:footcite:`baevski2020wav2vec`].
redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
WAV2VEC2_XLSR53
=
Wav2Vec2PretrainedModelBundle
(
WAV2VEC2_XLSR53
=
Wav2Vec2PretrainedModelBundle
(
'wav2vec2_fairseq_large_xlsr53.pth'
,
'wav2vec2_fairseq_large_xlsr53.pth'
,
...
@@ -662,9 +675,10 @@ Not fine-tuned.
...
@@ -662,9 +675,10 @@ Not fine-tuned.
Originally published by the authors of
Originally published by the authors of
*Unsupervised Cross-lingual Representation Learning for Speech Recognition*
*Unsupervised Cross-lingual Representation Learning for Speech Recognition*
[:footcite:`conneau2020unsupervised`].
[:footcite:`conneau2020unsupervised`] under MIT License and redistributed with the same license.
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/wav2vec#pre-trained-models>`__]
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
"""
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/wav2vec#pre-trained-models>`__]
"""
# noqa: E501
HUBERT_BASE
=
Wav2Vec2PretrainedModelBundle
(
HUBERT_BASE
=
Wav2Vec2PretrainedModelBundle
(
'hubert_fairseq_base_ls960.pth'
,
'hubert_fairseq_base_ls960.pth'
,
...
@@ -702,9 +716,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
...
@@ -702,9 +716,11 @@ Pre-trained on 960 hours of unlabeled audio from *LibriSpeech* dataset [:footcit
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`].
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
"""
# noqa: E501
HUBERT_LARGE
=
Wav2Vec2PretrainedModelBundle
(
HUBERT_LARGE
=
Wav2Vec2PretrainedModelBundle
(
'hubert_fairseq_large_ll60k.pth'
,
'hubert_fairseq_large_ll60k.pth'
,
...
@@ -742,9 +758,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
...
@@ -742,9 +758,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
*Libri-Light* dataset [:footcite:`librilight`].
*Libri-Light* dataset [:footcite:`librilight`].
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`].
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
"""
# noqa: E501
HUBERT_XLARGE
=
Wav2Vec2PretrainedModelBundle
(
HUBERT_XLARGE
=
Wav2Vec2PretrainedModelBundle
(
'hubert_fairseq_xlarge_ll60k.pth'
,
'hubert_fairseq_xlarge_ll60k.pth'
,
...
@@ -782,9 +800,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
...
@@ -782,9 +800,11 @@ Pre-trained on 60,000 hours of unlabeled audio from
*Libri-Light* dataset [:footcite:`librilight`].
*Libri-Light* dataset [:footcite:`librilight`].
Not fine-tuned.
Not fine-tuned.
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`].
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
"""
# noqa: E501
HUBERT_ASR_LARGE
=
Wav2Vec2PretrainedModelBundle
(
HUBERT_ASR_LARGE
=
Wav2Vec2PretrainedModelBundle
(
'hubert_fairseq_large_ll60k_asr_ls960.pth'
,
'hubert_fairseq_large_ll60k_asr_ls960.pth'
,
...
@@ -824,9 +844,11 @@ fine-tuned for ASR on 960 hours of transcribed audio from
...
@@ -824,9 +844,11 @@ fine-tuned for ASR on 960 hours of transcribed audio from
*LibriSpeech* dataset [:footcite:`7178964`]
*LibriSpeech* dataset [:footcite:`7178964`]
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`].
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
"""
# noqa: E501
HUBERT_ASR_XLARGE
=
Wav2Vec2PretrainedModelBundle
(
HUBERT_ASR_XLARGE
=
Wav2Vec2PretrainedModelBundle
(
'hubert_fairseq_xlarge_ll60k_asr_ls960.pth'
,
'hubert_fairseq_xlarge_ll60k_asr_ls960.pth'
,
...
@@ -866,6 +888,8 @@ fine-tuned for ASR on 960 hours of transcribed audio from
...
@@ -866,6 +888,8 @@ fine-tuned for ASR on 960 hours of transcribed audio from
*LibriSpeech* dataset [:footcite:`7178964`]
*LibriSpeech* dataset [:footcite:`7178964`]
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
(the combination of "train-clean-100", "train-clean-360", and "train-other-500").
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`].
Originally published by the authors of *HuBERT* [:footcite:`hsu2021hubert`] under MIT License and
[`Source <https://github.com/pytorch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
redistributed with the same license.
"""
[`License <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/LICENSE>`__,
`Source <https://github.com/pytorch/fairseq/blob/ce6c9eeae163ac04b79539c78e74f292f29eaa18/examples/hubert#pre-trained-and-fine-tuned-asr-models>`__]
"""
# noqa: E501
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment