# -*- coding: utf-8 -*- """ .. _force-training-example: Train Neural Network Potential To Both Energies and Forces ========================================================== We have seen how to train a neural network potential by manually writing training loop in :ref:`training-example`. This tutorial shows how to modify that script to train to force. """ ############################################################################### # Most part of the script are the same as :ref:`training-example`, we will omit # the comments for these parts. Please refer to :ref:`training-example` for more # information import torch import torchani import os import math import torch.utils.tensorboard import tqdm device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') Rcr = 5.2000e+00 Rca = 3.5000e+00 EtaR = torch.tensor([1.6000000e+01], device=device) ShfR = torch.tensor([9.0000000e-01, 1.1687500e+00, 1.4375000e+00, 1.7062500e+00, 1.9750000e+00, 2.2437500e+00, 2.5125000e+00, 2.7812500e+00, 3.0500000e+00, 3.3187500e+00, 3.5875000e+00, 3.8562500e+00, 4.1250000e+00, 4.3937500e+00, 4.6625000e+00, 4.9312500e+00], device=device) Zeta = torch.tensor([3.2000000e+01], device=device) ShfZ = torch.tensor([1.9634954e-01, 5.8904862e-01, 9.8174770e-01, 1.3744468e+00, 1.7671459e+00, 2.1598449e+00, 2.5525440e+00, 2.9452431e+00], device=device) EtaA = torch.tensor([8.0000000e+00], device=device) ShfA = torch.tensor([9.0000000e-01, 1.5500000e+00, 2.2000000e+00, 2.8500000e+00], device=device) num_species = 4 aev_computer = torchani.AEVComputer(Rcr, Rca, EtaR, ShfR, EtaA, Zeta, ShfA, ShfZ, num_species) energy_shifter = torchani.utils.EnergyShifter(None) species_to_tensor = torchani.utils.ChemicalSymbolsToInts('HCNO') try: path = os.path.dirname(os.path.realpath(__file__)) except NameError: path = os.getcwd() dspath = os.path.join(path, '../dataset/ani-1x/sample.h5') batch_size = 2560 ############################################################################### # The code to create the dataset is a bit different: we need to manually # specify that ``atomic_properties=['forces']`` so that forces will be read # from hdf5 files. training, validation = torchani.data.load_ani_dataset( dspath, species_to_tensor, batch_size, rm_outlier=True, device=device, atomic_properties=['forces'], transform=[energy_shifter.subtract_from_dataset], split=[0.8, None]) print('Self atomic energies: ', energy_shifter.self_energies) ############################################################################### # When iterating the dataset, we will get pairs of input and output # ``(species_coordinates, properties)``, in this case, ``properties`` would # contain a key ``'atomic'`` where ``properties['atomic']`` is a list of dict # containing forces: data = training[0] properties = data[1] atomic_properties = properties['atomic'] print(type(atomic_properties)) print(list(atomic_properties[0].keys())) ############################################################################### # Due to padding, part of the forces might be 0 print(atomic_properties[0]['forces'][0]) ############################################################################### # The code to define networks, optimizers, are mostly the same H_network = torch.nn.Sequential( torch.nn.Linear(384, 160), torch.nn.CELU(0.1), torch.nn.Linear(160, 128), torch.nn.CELU(0.1), torch.nn.Linear(128, 96), torch.nn.CELU(0.1), torch.nn.Linear(96, 1) ) C_network = torch.nn.Sequential( torch.nn.Linear(384, 144), torch.nn.CELU(0.1), torch.nn.Linear(144, 112), torch.nn.CELU(0.1), torch.nn.Linear(112, 96), torch.nn.CELU(0.1), torch.nn.Linear(96, 1) ) N_network = torch.nn.Sequential( torch.nn.Linear(384, 128), torch.nn.CELU(0.1), torch.nn.Linear(128, 112), torch.nn.CELU(0.1), torch.nn.Linear(112, 96), torch.nn.CELU(0.1), torch.nn.Linear(96, 1) ) O_network = torch.nn.Sequential( torch.nn.Linear(384, 128), torch.nn.CELU(0.1), torch.nn.Linear(128, 112), torch.nn.CELU(0.1), torch.nn.Linear(112, 96), torch.nn.CELU(0.1), torch.nn.Linear(96, 1) ) nn = torchani.ANIModel([H_network, C_network, N_network, O_network]) print(nn) ############################################################################### # Initialize the weights and biases. # # .. note:: # Pytorch default initialization for the weights and biases in linear layers # is Kaiming uniform. See: `TORCH.NN.MODULES.LINEAR`_ # We initialize the weights similarly but from the normal distribution. # The biases were initialized to zero. # # .. _TORCH.NN.MODULES.LINEAR: # https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear def init_params(m): if isinstance(m, torch.nn.Linear): torch.nn.init.kaiming_normal_(m.weight, a=1.0) torch.nn.init.zeros_(m.bias) nn.apply(init_params) ############################################################################### # Let's now create a pipeline of AEV Computer --> Neural Networks. model = torchani.nn.Sequential(aev_computer, nn).to(device) ############################################################################### # Here we will use Adam with weight decay for the weights and Stochastic Gradient # Descent for biases. AdamW = torchani.optim.AdamW([ # H networks {'params': [H_network[0].weight]}, {'params': [H_network[2].weight], 'weight_decay': 0.00001}, {'params': [H_network[4].weight], 'weight_decay': 0.000001}, {'params': [H_network[6].weight]}, # C networks {'params': [C_network[0].weight]}, {'params': [C_network[2].weight], 'weight_decay': 0.00001}, {'params': [C_network[4].weight], 'weight_decay': 0.000001}, {'params': [C_network[6].weight]}, # N networks {'params': [N_network[0].weight]}, {'params': [N_network[2].weight], 'weight_decay': 0.00001}, {'params': [N_network[4].weight], 'weight_decay': 0.000001}, {'params': [N_network[6].weight]}, # O networks {'params': [O_network[0].weight]}, {'params': [O_network[2].weight], 'weight_decay': 0.00001}, {'params': [O_network[4].weight], 'weight_decay': 0.000001}, {'params': [O_network[6].weight]}, ]) SGD = torch.optim.SGD([ # H networks {'params': [H_network[0].bias]}, {'params': [H_network[2].bias]}, {'params': [H_network[4].bias]}, {'params': [H_network[6].bias]}, # C networks {'params': [C_network[0].bias]}, {'params': [C_network[2].bias]}, {'params': [C_network[4].bias]}, {'params': [C_network[6].bias]}, # N networks {'params': [N_network[0].bias]}, {'params': [N_network[2].bias]}, {'params': [N_network[4].bias]}, {'params': [N_network[6].bias]}, # O networks {'params': [O_network[0].bias]}, {'params': [O_network[2].bias]}, {'params': [O_network[4].bias]}, {'params': [O_network[6].bias]}, ], lr=1e-3) AdamW_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(AdamW, factor=0.5, patience=100, threshold=0) SGD_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(SGD, factor=0.5, patience=100, threshold=0) ############################################################################### # This part of the code is also the same latest_checkpoint = 'force-training-latest.pt' ############################################################################### # Resume training from previously saved checkpoints: if os.path.isfile(latest_checkpoint): checkpoint = torch.load(latest_checkpoint) nn.load_state_dict(checkpoint['nn']) AdamW.load_state_dict(checkpoint['AdamW']) SGD.load_state_dict(checkpoint['SGD']) AdamW_scheduler.load_state_dict(checkpoint['AdamW_scheduler']) SGD_scheduler.load_state_dict(checkpoint['SGD_scheduler']) ############################################################################### # During training, we need to validate on validation set and if validation error # is better than the best, then save the new best model to a checkpoint # helper function to convert energy unit from Hartree to kcal/mol def hartree2kcal(x): return 627.509 * x def validate(): # run validation mse_sum = torch.nn.MSELoss(reduction='sum') total_mse = 0.0 count = 0 for batch_x, batch_y in validation: true_energies = batch_y['energies'] predicted_energies = [] for chunk_species, chunk_coordinates in batch_x: _, chunk_energies = model((chunk_species, chunk_coordinates)) predicted_energies.append(chunk_energies) predicted_energies = torch.cat(predicted_energies) total_mse += mse_sum(predicted_energies, true_energies).item() count += predicted_energies.shape[0] return hartree2kcal(math.sqrt(total_mse / count)) ############################################################################### # We will also use TensorBoard to visualize our training process tensorboard = torch.utils.tensorboard.SummaryWriter() ############################################################################### # In the training loop, we need to compute force, and loss for forces mse = torch.nn.MSELoss(reduction='none') print("training starting from epoch", AdamW_scheduler.last_epoch + 1) # We only train 3 epoches here in able to generate the docs quickly. # Real training should take much more than 3 epoches. max_epochs = 3 early_stopping_learning_rate = 1.0E-5 force_coefficient = 0.1 # controls the importance of energy loss vs force loss best_model_checkpoint = 'force-training-best.pt' for _ in range(AdamW_scheduler.last_epoch + 1, max_epochs): rmse = validate() print('RMSE:', rmse, 'at epoch', AdamW_scheduler.last_epoch + 1) learning_rate = AdamW.param_groups[0]['lr'] if learning_rate < early_stopping_learning_rate: break # checkpoint if AdamW_scheduler.is_better(rmse, AdamW_scheduler.best): torch.save(nn.state_dict(), best_model_checkpoint) AdamW_scheduler.step(rmse) SGD_scheduler.step(rmse) tensorboard.add_scalar('validation_rmse', rmse, AdamW_scheduler.last_epoch) tensorboard.add_scalar('best_validation_rmse', AdamW_scheduler.best, AdamW_scheduler.last_epoch) tensorboard.add_scalar('learning_rate', learning_rate, AdamW_scheduler.last_epoch) # Besides being stored in x, species and coordinates are also stored in y. # So here, for simplicity, we just ignore the x and use y for everything. for i, (_, batch_y) in tqdm.tqdm( enumerate(training), total=len(training), desc="epoch {}".format(AdamW_scheduler.last_epoch) ): true_energies = batch_y['energies'] predicted_energies = [] num_atoms = [] force_loss = [] for chunk in batch_y['atomic']: chunk_species = chunk['species'] chunk_coordinates = chunk['coordinates'] chunk_true_forces = chunk['forces'] chunk_num_atoms = (chunk_species >= 0).to(true_energies.dtype).sum(dim=1) num_atoms.append(chunk_num_atoms) # We must set `chunk_coordinates` to make it requires grad, so # that we could compute force from it chunk_coordinates.requires_grad_(True) _, chunk_energies = model((chunk_species, chunk_coordinates)) # We can use torch.autograd.grad to compute force. Remember to # create graph so that the loss of the force can contribute to # the gradient of parameters, and also to retain graph so that # we can backward through it a second time when computing gradient # w.r.t. parameters. chunk_forces = -torch.autograd.grad(chunk_energies.sum(), chunk_coordinates, create_graph=True, retain_graph=True)[0] # Now let's compute loss for force of this chunk chunk_force_loss = mse(chunk_true_forces, chunk_forces).sum(dim=(1, 2)) / chunk_num_atoms predicted_energies.append(chunk_energies) force_loss.append(chunk_force_loss) num_atoms = torch.cat(num_atoms) predicted_energies = torch.cat(predicted_energies) # Now the total loss has two parts, energy loss and force loss energy_loss = (mse(predicted_energies, true_energies) / num_atoms.sqrt()).mean() force_loss = torch.cat(force_loss).mean() loss = energy_loss + force_coefficient * force_loss AdamW.zero_grad() SGD.zero_grad() loss.backward() AdamW.step() SGD.step() # write current batch loss to TensorBoard tensorboard.add_scalar('batch_loss', loss, AdamW_scheduler.last_epoch * len(training) + i) torch.save({ 'nn': nn.state_dict(), 'AdamW': AdamW.state_dict(), 'SGD': SGD.state_dict(), 'AdamW_scheduler': AdamW_scheduler.state_dict(), 'SGD_scheduler': SGD_scheduler.state_dict(), }, latest_checkpoint)