import torch import torchani import unittest import os import pickle path = os.path.dirname(os.path.realpath(__file__)) N = 97 class TestForce(unittest.TestCase): def setUp(self): self.tolerance = 1e-5 ani1x = torchani.models.ANI1x() self.aev_computer = ani1x.aev_computer self.nnp = ani1x.neural_networks[0] self.model = torch.nn.Sequential(self.aev_computer, self.nnp) def random_skip(self): return False def transform(self, x): return x def testIsomers(self): for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, _, forces = pickle.load(f) coordinates = torch.from_numpy(coordinates) species = torch.from_numpy(species) forces = torch.from_numpy(forces) coordinates = self.transform(coordinates) species = self.transform(species) forces = self.transform(forces) coordinates.requires_grad_(True) _, energies = self.model((species, coordinates)) derivative = torch.autograd.grad(energies.sum(), coordinates)[0] max_diff = (forces + derivative).abs().max().item() self.assertLess(max_diff, self.tolerance) def testPadding(self): species_coordinates = [] coordinates_forces = [] for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, _, forces = pickle.load(f) coordinates = torch.from_numpy(coordinates) species = torch.from_numpy(species) forces = torch.from_numpy(forces) coordinates = self.transform(coordinates) species = self.transform(species) forces = self.transform(forces) coordinates.requires_grad_(True) species_coordinates.append({'species': species, 'coordinates': coordinates}) species_coordinates = torchani.utils.pad_atomic_properties( species_coordinates) _, energies = self.model((species_coordinates['species'], species_coordinates['coordinates'])) energies = energies.sum() for coordinates, forces in coordinates_forces: derivative = torch.autograd.grad(energies, coordinates, retain_graph=True)[0] max_diff = (forces + derivative).abs().max().item() self.assertLess(max_diff, self.tolerance) def testBenzeneMD(self): tolerance = 1e-5 for i in range(10): datafile = os.path.join(path, 'test_data/benzene-md/{}.dat'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, _, forces, cell, pbc \ = pickle.load(f) coordinates = torch.from_numpy(coordinates).float().unsqueeze(0).requires_grad_(True) species = torch.from_numpy(species).unsqueeze(0) cell = torch.from_numpy(cell).float() pbc = torch.from_numpy(pbc) forces = torch.from_numpy(forces) coordinates = torchani.utils.map2central(cell, coordinates, pbc) coordinates = self.transform(coordinates) species = self.transform(species) forces = self.transform(forces) _, aev = self.aev_computer((species, coordinates), cell=cell, pbc=pbc) _, energies_ = self.nnp((species, aev)) derivative = torch.autograd.grad(energies_.sum(), coordinates)[0] max_diff = (forces + derivative).abs().max().item() self.assertLess(max_diff, tolerance) def testTripeptideMD(self): tolerance = 2e-6 for i in range(100): datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, _, forces, _, _ \ = pickle.load(f) coordinates = torch.from_numpy(coordinates).float().unsqueeze(0).requires_grad_(True) species = torch.from_numpy(species).unsqueeze(0) forces = torch.from_numpy(forces) coordinates = self.transform(coordinates) species = self.transform(species) forces = self.transform(forces) _, energies_ = self.model((species, coordinates)) derivative = torch.autograd.grad(energies_.sum(), coordinates)[0] max_diff = (forces + derivative).abs().max().item() self.assertLess(max_diff, tolerance) def testNIST(self): datafile = os.path.join(path, 'test_data/NIST/all') with open(datafile, 'rb') as f: data = pickle.load(f) for coordinates, species, _, _, _, forces in data: if self.random_skip(): continue coordinates = torch.from_numpy(coordinates).to(torch.float) \ .requires_grad_(True) species = torch.from_numpy(species) forces = torch.from_numpy(forces).to(torch.float) _, energies = self.model((species, coordinates)) derivative = torch.autograd.grad(energies.sum(), coordinates)[0] max_diff = (forces + derivative).abs().max().item() self.assertLess(max_diff, self.tolerance) if __name__ == '__main__': unittest.main()