import torch import ignite import torchani import timeit import model import tqdm import argparse # parse command line arguments parser = argparse.ArgumentParser() parser.add_argument('dataset_path', help='Path of the dataset, can a hdf5 file \ or a directory containing hdf5 files') parser.add_argument('-d', '--device', help='Device of modules and tensors', default=('cuda' if torch.cuda.is_available() else 'cpu')) parser.add_argument('--batch_size', help='Number of conformations of each batch', default=1024, type=int) parser = parser.parse_args() # set up benchmark device = torch.device(parser.device) nnp, shift_energy = model.get_or_create_model('/tmp/model.pt', device=device) dataset = torchani.training.BatchedANIDataset( parser.dataset_path, nnp[0].species, parser.batch_size, device=device, transform=[shift_energy.subtract_from_dataset]) container = torchani.training.Container({'energies': nnp}) optimizer = torch.optim.Adam(nnp.parameters()) trainer = ignite.engine.create_supervised_trainer( container, optimizer, torchani.training.MSELoss('energies')) @trainer.on(ignite.engine.Events.EPOCH_STARTED) def init_tqdm(trainer): trainer.state.tqdm = tqdm.tqdm(total=len(dataset), desc='epoch') @trainer.on(ignite.engine.Events.ITERATION_COMPLETED) def update_tqdm(trainer): trainer.state.tqdm.update(1) @trainer.on(ignite.engine.Events.EPOCH_COMPLETED) def finalize_tqdm(trainer): trainer.state.tqdm.close() timers = {} def time_func(key, func): timers[key] = 0 def wrapper(*args, **kwargs): start = timeit.default_timer() ret = func(*args, **kwargs) end = timeit.default_timer() timers[key] += end - start return ret return wrapper # enable timers nnp[0].radial_subaev_terms = time_func('radial terms', nnp[0].radial_subaev_terms) nnp[0].angular_subaev_terms = time_func('angular terms', nnp[0].angular_subaev_terms) nnp[0].terms_and_indices = time_func('terms and indices', nnp[0].terms_and_indices) nnp[0].combinations = time_func('combinations', nnp[0].combinations) nnp[0].compute_mask_r = time_func('mask_r', nnp[0].compute_mask_r) nnp[0].compute_mask_a = time_func('mask_a', nnp[0].compute_mask_a) nnp[0].assemble = time_func('assemble', nnp[0].assemble) nnp[0].forward = time_func('total', nnp[0].forward) nnp[1].forward = time_func('forward', nnp[1].forward) # run it! start = timeit.default_timer() trainer.run(dataset, max_epochs=1) elapsed = round(timeit.default_timer() - start, 2) print('Radial terms:', timers['radial terms']) print('Angular terms:', timers['angular terms']) print('Terms and indices:', timers['terms and indices']) print('Combinations:', timers['combinations']) print('Mask R:', timers['mask_r']) print('Mask A:', timers['mask_a']) print('Assemble:', timers['assemble']) print('Total AEV:', timers['total']) print('NN:', timers['forward']) print('Epoch time:', elapsed)