import torchani.data import pickle from configs import data_path chunk_size = 64 dataset = torchani.data.load_dataset(data_path) chunks = len(torchani.data.BatchSampler(dataset, chunk_size, 1)) print(chunks, 'chunks') training_size = int(chunks*0.8) validation_size = int(chunks*0.1) testing_size = chunks - training_size - validation_size training, validation, testing = torchani.data.random_split( dataset, [training_size, validation_size, testing_size], chunk_size) with open('data/dataset.dat', 'wb') as f: pickle.dump((training, validation, testing), f)