import torch import torchani import os def celu(x, alpha): return torch.where(x > 0, x, alpha * (torch.exp(x/alpha)-1)) class AtomicNetwork(torch.nn.Module): def __init__(self): super(AtomicNetwork, self).__init__() self.output_length = 1 self.layer1 = torch.nn.Linear(384, 128) self.layer2 = torch.nn.Linear(128, 128) self.layer3 = torch.nn.Linear(128, 64) self.layer4 = torch.nn.Linear(64, 1) def forward(self, aev): y = aev y = self.layer1(y) y = celu(y, 0.1) y = self.layer2(y) y = celu(y, 0.1) y = self.layer3(y) y = celu(y, 0.1) y = self.layer4(y) return y def get_or_create_model(filename, benchmark=False, device=torchani.default_device): aev_computer = torchani.SortedAEV(benchmark=benchmark, device=device) prepare = torchani.PrepareInput(aev_computer.species, aev_computer.device) model = torchani.models.CustomModel( reducer=torch.sum, benchmark=benchmark, per_species={ 'C': AtomicNetwork(), 'H': AtomicNetwork(), 'N': AtomicNetwork(), 'O': AtomicNetwork(), }) class Flatten(torch.nn.Module): def forward(self, x): return x.flatten() model = torch.nn.Sequential(prepare, aev_computer, model, Flatten()) if os.path.isfile(filename): model.load_state_dict(torch.load(filename)) else: torch.save(model.state_dict(), filename) return model.to(device)