import unittest import pickle import os import torch import torchani path = os.path.dirname(os.path.realpath(__file__)) N = 10 class TestEnsemble(unittest.TestCase): def setUp(self): self.tol = 1e-5 self.conformations = 20 def _test_molecule(self, coordinates, species): coordinates = torch.tensor(coordinates, requires_grad=True) n = torchani.buildin_ensemble prefix = torchani.buildin_model_prefix aev = torchani.SortedAEV() prepare = torchani.PrepareInput(aev.species) ensemble = torchani.models.NeuroChemNNP(aev.species, ensemble=True) ensemble = torch.nn.Sequential(prepare, aev, ensemble) models = [torchani.models. NeuroChemNNP(aev.species, ensemble=False, from_=prefix + '{}/networks/'.format(i)) for i in range(n)] models = [torch.nn.Sequential(prepare, aev, m) for m in models] energy1 = ensemble((species, coordinates)) force1 = torch.autograd.grad(energy1.sum(), coordinates)[0] energy2 = [m((species, coordinates)) for m in models] energy2 = sum(energy2) / n force2 = torch.autograd.grad(energy2.sum(), coordinates)[0] energy_diff = (energy1 - energy2).abs().max().item() force_diff = (force1 - force2).abs().max().item() self.assertLess(energy_diff, self.tol) self.assertLess(force_diff, self.tol) def testGDB(self): for i in range(N): datafile = os.path.join(path, 'test_data/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, _, _ = pickle.load(f) self._test_molecule(coordinates, species) if __name__ == '__main__': unittest.main()