import sys import torch import ignite import torchani import timeit import model import tqdm device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') chunk_size = 256 batch_chunks = 4 dataset_path = sys.argv[1] shift_energy = torchani.EnergyShifter() dataset = torchani.data.ANIDataset( dataset_path, chunk_size, device=device, transform=[shift_energy.dataset_subtract_sae]) dataloader = torchani.data.dataloader(dataset, batch_chunks) nnp = model.get_or_create_model('/tmp/model.pt', True, device=device) batch_nnp = torchani.models.BatchModel(nnp) container = torchani.ignite.Container({'energies': batch_nnp}) optimizer = torch.optim.Adam(nnp.parameters()) trainer = ignite.engine.create_supervised_trainer( container, optimizer, torchani.ignite.energy_mse_loss) @trainer.on(ignite.engine.Events.EPOCH_STARTED) def init_tqdm(trainer): trainer.state.tqdm = tqdm.tqdm(total=len(dataloader), desc='epoch') @trainer.on(ignite.engine.Events.ITERATION_COMPLETED) def update_tqdm(trainer): trainer.state.tqdm.update(1) @trainer.on(ignite.engine.Events.EPOCH_COMPLETED) def finalize_tqdm(trainer): trainer.state.tqdm.close() start = timeit.default_timer() trainer.run(dataloader, max_epochs=1) elapsed = round(timeit.default_timer() - start, 2) print('Radial terms:', nnp[1].timers['radial terms']) print('Angular terms:', nnp[1].timers['angular terms']) print('Terms and indices:', nnp[1].timers['terms and indices']) print('Combinations:', nnp[1].timers['combinations']) print('Mask R:', nnp[1].timers['mask_r']) print('Mask A:', nnp[1].timers['mask_a']) print('Assemble:', nnp[1].timers['assemble']) print('Total AEV:', nnp[1].timers['total']) print('NN:', nnp[2].timers['forward']) print('Epoch time:', elapsed)