import torch import torchani import unittest import os import pickle path = os.path.dirname(os.path.realpath(__file__)) N = 97 class TestForce(unittest.TestCase): def setUp(self): self.tolerance = 1e-5 aev_computer = torchani.SortedAEV() prepare = torchani.PrepareInput(aev_computer.species) nnp = torchani.models.NeuroChemNNP(aev_computer.species) self.model = torch.nn.Sequential(prepare, aev_computer, nnp) def _test_molecule(self, coordinates, species, forces): # generate a random permute atoms = len(species) randperm = torch.randperm(atoms) coordinates = coordinates.index_select(1, randperm) forces = forces.index_select(1, randperm) species = [species[i] for i in randperm.tolist()] coordinates = torch.tensor(coordinates, requires_grad=True) _, energies = self.model((species, coordinates)) derivative = torch.autograd.grad(energies.sum(), coordinates)[0] max_diff = (forces + derivative).abs().max().item() self.assertLess(max_diff, self.tolerance) def testGDB(self): for i in range(N): datafile = os.path.join(path, 'test_data/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, _, forces = pickle.load(f) self._test_molecule(coordinates, species, forces) if __name__ == '__main__': unittest.main()