import torch import torchani import unittest import os import pickle path = os.path.dirname(os.path.realpath(__file__)) N = 97 class TestEnergies(unittest.TestCase): def setUp(self): self.tolerance = 5e-5 model = torchani.models.ANI1x(model_index=0) self.aev_computer = model.aev_computer self.nnp = model.neural_networks self.energy_shifter = model.energy_shifter self.nn = torchani.nn.Sequential(self.nnp, self.energy_shifter) self.model = torchani.nn.Sequential(self.aev_computer, self.nnp, self.energy_shifter) def random_skip(self): return False def transform(self, x): return x def testIsomers(self): for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, energies, _ = pickle.load(f) coordinates = torch.from_numpy(coordinates).to(torch.float) species = torch.from_numpy(species) energies = torch.from_numpy(energies).to(torch.float) coordinates = self.transform(coordinates) species = self.transform(species) energies = self.transform(energies) _, energies_ = self.model((species, coordinates)) max_diff = (energies - energies_).abs().max().item() self.assertLess(max_diff, self.tolerance) def testPadding(self): species_coordinates = [] energies = [] for i in range(N): datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, e, _ = pickle.load(f) coordinates = torch.from_numpy(coordinates).to(torch.float) species = torch.from_numpy(species) e = torch.from_numpy(e).to(torch.float) coordinates = self.transform(coordinates) species = self.transform(species) e = self.transform(e) species_coordinates.append( torchani.utils.broadcast_first_dim({'species': species, 'coordinates': coordinates})) energies.append(e) species_coordinates = torchani.utils.pad_atomic_properties( species_coordinates) energies = torch.cat(energies) _, energies_ = self.model((species_coordinates['species'], species_coordinates['coordinates'])) max_diff = (energies - energies_).abs().max().item() self.assertLess(max_diff, self.tolerance) class TestEnergiesEnergyShifterJIT(TestEnergies): def setUp(self): super().setUp() self.energy_shifter = torch.jit.script(self.energy_shifter) self.nn = torchani.nn.Sequential(self.nnp, self.energy_shifter) self.model = torchani.nn.Sequential(self.aev_computer, self.nnp, self.energy_shifter) class TestEnergiesANIModelJIT(TestEnergies): def setUp(self): super().setUp() self.nnp = torch.jit.script(self.nnp) self.nn = torchani.nn.Sequential(self.nnp, self.energy_shifter) self.model = torchani.nn.Sequential(self.aev_computer, self.nnp, self.energy_shifter) class TestEnergiesJIT(TestEnergies): def setUp(self): super().setUp() self.model = torch.jit.script(self.model) if __name__ == '__main__': unittest.main()