import torch import torchani import unittest import os import pickle path = os.path.dirname(os.path.realpath(__file__)) N = 97 class TestEnergies(unittest.TestCase): def setUp(self): self.tolerance = 5e-5 builtins = torchani.neurochem.Builtins() aev_computer = builtins.aev_computer nnp = builtins.models[0] shift_energy = builtins.energy_shifter self.model = torch.nn.Sequential(aev_computer, nnp, shift_energy) def testIsomers(self): for i in range(N): datafile = os.path.join(path, 'test_data/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, energies, _ = pickle.load(f) _, energies_ = self.model((species, coordinates)) max_diff = (energies - energies_).abs().max().item() self.assertLess(max_diff, self.tolerance) def testPadding(self): species_coordinates = [] energies = [] for i in range(N): datafile = os.path.join(path, 'test_data/{}'.format(i)) with open(datafile, 'rb') as f: coordinates, species, _, _, e, _ = pickle.load(f) species_coordinates.append((species, coordinates)) energies.append(e) species, coordinates = torchani.utils.pad_and_batch( species_coordinates) energies = torch.cat(energies) _, energies_ = self.model((species, coordinates)) max_diff = (energies - energies_).abs().max().item() self.assertLess(max_diff, self.tolerance) if __name__ == '__main__': unittest.main()