import torch import torchani import os builtins = torchani.neurochem.Builtins() consts = builtins.consts aev_computer = builtins.aev_computer shift_energy = builtins.energy_shifter def atomic(): model = torch.nn.Sequential( torch.nn.Linear(384, 128), torch.nn.CELU(0.1), torch.nn.Linear(128, 128), torch.nn.CELU(0.1), torch.nn.Linear(128, 64), torch.nn.CELU(0.1), torch.nn.Linear(64, 1) ) return model def get_or_create_model(filename, device=torch.device('cpu')): model = torchani.ANIModel([atomic() for _ in range(4)]) class Flatten(torch.nn.Module): def forward(self, x): return x[0], x[1].flatten() model = torch.nn.Sequential(aev_computer, model, Flatten()) if os.path.isfile(filename): model.load_state_dict(torch.load(filename)) else: torch.save(model.state_dict(), filename) return model.to(device)