import torch import torchani import unittest import os path = os.path.dirname(os.path.realpath(__file__)) dspath = os.path.join(path, '../dataset/ani-1x/sample.h5') batch_size = 256 chunk_threshold = 5 other_properties = {'properties': ['energies'], 'padding_values': [None], 'padded_shapes': [(batch_size, )], 'dtypes': [torch.float64], } class TestBuiltinModelsJIT(unittest.TestCase): def setUp(self): self.ani1ccx = torchani.models.ANI1ccx() self.ds = torchani.data.load(dspath).subtract_self_energies(self.ani1ccx.sae_dict).species_to_indices().shuffle().collate(256).cache() def _test_model(self, model): properties = next(iter(self.ds)) input_ = (properties['species'], properties['coordinates'].float()) _, e = model(input_) _, e2 = torch.jit.script(model)(input_) self.assertTrue(torch.allclose(e, e2)) def _test_ensemble(self, ensemble): self._test_model(ensemble) for m in ensemble: self._test_model(m) def testANI1x(self): ani1x = torchani.models.ANI1x() self._test_ensemble(ani1x) def testANI1ccx(self): ani1ccx = torchani.models.ANI1ccx() self._test_ensemble(ani1ccx) if __name__ == '__main__': unittest.main()