import torch import ignite import torchani import timeit import tqdm import argparse # parse command line arguments parser = argparse.ArgumentParser() parser.add_argument('dataset_path', help='Path of the dataset, can a hdf5 file \ or a directory containing hdf5 files') parser.add_argument('-d', '--device', help='Device of modules and tensors', default=('cuda' if torch.cuda.is_available() else 'cpu')) parser.add_argument('--batch_size', help='Number of conformations of each batch', default=1024, type=int) parser = parser.parse_args() # set up benchmark device = torch.device(parser.device) builtins = torchani.neurochem.Builtins() consts = builtins.consts aev_computer = builtins.aev_computer shift_energy = builtins.energy_shifter def atomic(): model = torch.nn.Sequential( torch.nn.Linear(384, 128), torch.nn.CELU(0.1), torch.nn.Linear(128, 128), torch.nn.CELU(0.1), torch.nn.Linear(128, 64), torch.nn.CELU(0.1), torch.nn.Linear(64, 1) ) return model model = torchani.ANIModel([atomic() for _ in range(4)]) class Flatten(torch.nn.Module): def forward(self, x): return x[0], x[1].flatten() nnp = torch.nn.Sequential(aev_computer, model, Flatten()).to(device) dataset = torchani.data.BatchedANIDataset( parser.dataset_path, consts.species_to_tensor, parser.batch_size, device=device, transform=[shift_energy.subtract_from_dataset]) container = torchani.ignite.Container({'energies': nnp}) optimizer = torch.optim.Adam(nnp.parameters()) trainer = ignite.engine.create_supervised_trainer( container, optimizer, torchani.ignite.MSELoss('energies')) @trainer.on(ignite.engine.Events.EPOCH_STARTED) def init_tqdm(trainer): trainer.state.tqdm = tqdm.tqdm(total=len(dataset), desc='epoch') @trainer.on(ignite.engine.Events.ITERATION_COMPLETED) def update_tqdm(trainer): trainer.state.tqdm.update(1) @trainer.on(ignite.engine.Events.EPOCH_COMPLETED) def finalize_tqdm(trainer): trainer.state.tqdm.close() timers = {} def time_func(key, func): timers[key] = 0 def wrapper(*args, **kwargs): start = timeit.default_timer() ret = func(*args, **kwargs) end = timeit.default_timer() timers[key] += end - start return ret return wrapper # enable timers nnp[0].forward = time_func('total', nnp[0].forward) nnp[1].forward = time_func('forward', nnp[1].forward) # run it! start = timeit.default_timer() trainer.run(dataset, max_epochs=1) elapsed = round(timeit.default_timer() - start, 2) print('Total AEV:', timers['total']) print('NN:', timers['forward']) print('Epoch time:', elapsed)